Temporal Data Mining via Unsupervised Ensemble Learning:
Temporal Data Mining via Unsupervised Ensemble Learning provides the principle knowledge of temporal data mining in association with unsupervised ensemble learning and the fundamental problems of temporal data clustering from different perspectives. By providing three proposed ensemble approaches of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Elsevier Science
2016
|
Schlagworte: | |
Online-Zugang: | FLA01 Volltext |
Zusammenfassung: | Temporal Data Mining via Unsupervised Ensemble Learning provides the principle knowledge of temporal data mining in association with unsupervised ensemble learning and the fundamental problems of temporal data clustering from different perspectives. By providing three proposed ensemble approaches of temporal data clustering, this book presents a practical focus of fundamental knowledge and techniques, along with a rich blend of theory and practice. Furthermore, the book includes illustrations of the proposed approaches based on data and simulation experiments to demonstrate all methodologies, and is a guide to the proper usage of these methods. As there is nothing universal that can solve all problems, it is important to understand the characteristics of both clustering algorithms and the target temporal data so the correct approach can be selected for a given clustering problem. Scientists, researchers, and data analysts working with machine learning and data mining will benefit from this innovative book, as will undergraduate and graduate students following courses in computer science, engineering, and statistics. Includes fundamental concepts and knowledge, covering all key tasks and techniques of temporal data mining, i.e., temporal data representations, similarity measure, and mining tasks Concentrates on temporal data clustering tasks from different perspectives, including major algorithms from clustering algorithms and ensemble learning approaches Presents a rich blend of theory and practice, addressing seminal research ideas and looking at the technology from a practical point-of-view |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 online resource |
ISBN: | 0128118415 9780128118412 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046127035 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 190827s2016 |||| o||u| ||||||eng d | ||
020 | |a 0128118415 |9 0-12-811841-5 | ||
020 | |a 9780128118412 |9 978-0-12-811841-2 | ||
035 | |a (ZDB-33-ESD)ocn963702404 | ||
035 | |a (OCoLC)963702404 | ||
035 | |a (DE-599)BVBBV046127035 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 006.312 |2 23 | |
100 | 1 | |a Yang, Yun |e Verfasser |4 aut | |
245 | 1 | 0 | |a Temporal Data Mining via Unsupervised Ensemble Learning |
264 | 1 | |b Elsevier Science |c 2016 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | |a Temporal Data Mining via Unsupervised Ensemble Learning provides the principle knowledge of temporal data mining in association with unsupervised ensemble learning and the fundamental problems of temporal data clustering from different perspectives. By providing three proposed ensemble approaches of temporal data clustering, this book presents a practical focus of fundamental knowledge and techniques, along with a rich blend of theory and practice. Furthermore, the book includes illustrations of the proposed approaches based on data and simulation experiments to demonstrate all methodologies, and is a guide to the proper usage of these methods. As there is nothing universal that can solve all problems, it is important to understand the characteristics of both clustering algorithms and the target temporal data so the correct approach can be selected for a given clustering problem. Scientists, researchers, and data analysts working with machine learning and data mining will benefit from this innovative book, as will undergraduate and graduate students following courses in computer science, engineering, and statistics. Includes fundamental concepts and knowledge, covering all key tasks and techniques of temporal data mining, i.e., temporal data representations, similarity measure, and mining tasks Concentrates on temporal data clustering tasks from different perspectives, including major algorithms from clustering algorithms and ensemble learning approaches Presents a rich blend of theory and practice, addressing seminal research ideas and looking at the technology from a practical point-of-view | ||
650 | 7 | |a COMPUTERS / General |2 bisacsh | |
650 | 7 | |a Data mining |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a Temporal databases |2 fast | |
650 | 4 | |a Data mining | |
650 | 4 | |a Temporal databases | |
650 | 4 | |a Machine learning | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0128116544 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780128116548 |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780128116548 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-33-ESD | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031507489 | ||
966 | e | |u http://www.sciencedirect.com/science/book/9780128116548 |l FLA01 |p ZDB-33-ESD |q FLA_PDA_ESD |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804180447721160704 |
---|---|
any_adam_object | |
author | Yang, Yun |
author_facet | Yang, Yun |
author_role | aut |
author_sort | Yang, Yun |
author_variant | y y yy |
building | Verbundindex |
bvnumber | BV046127035 |
collection | ZDB-33-ESD |
ctrlnum | (ZDB-33-ESD)ocn963702404 (OCoLC)963702404 (DE-599)BVBBV046127035 |
dewey-full | 006.312 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.312 |
dewey-search | 006.312 |
dewey-sort | 16.312 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03144nmm a2200445zc 4500</leader><controlfield tag="001">BV046127035</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190827s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0128118415</subfield><subfield code="9">0-12-811841-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128118412</subfield><subfield code="9">978-0-12-811841-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-ESD)ocn963702404</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)963702404</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046127035</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.312</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Yun</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Temporal Data Mining via Unsupervised Ensemble Learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">Elsevier Science</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Temporal Data Mining via Unsupervised Ensemble Learning provides the principle knowledge of temporal data mining in association with unsupervised ensemble learning and the fundamental problems of temporal data clustering from different perspectives. By providing three proposed ensemble approaches of temporal data clustering, this book presents a practical focus of fundamental knowledge and techniques, along with a rich blend of theory and practice. Furthermore, the book includes illustrations of the proposed approaches based on data and simulation experiments to demonstrate all methodologies, and is a guide to the proper usage of these methods. As there is nothing universal that can solve all problems, it is important to understand the characteristics of both clustering algorithms and the target temporal data so the correct approach can be selected for a given clustering problem. Scientists, researchers, and data analysts working with machine learning and data mining will benefit from this innovative book, as will undergraduate and graduate students following courses in computer science, engineering, and statistics. Includes fundamental concepts and knowledge, covering all key tasks and techniques of temporal data mining, i.e., temporal data representations, similarity measure, and mining tasks Concentrates on temporal data clustering tasks from different perspectives, including major algorithms from clustering algorithms and ensemble learning approaches Presents a rich blend of theory and practice, addressing seminal research ideas and looking at the technology from a practical point-of-view</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data mining</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Temporal databases</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temporal databases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0128116544</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780128116548</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780128116548</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031507489</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.sciencedirect.com/science/book/9780128116548</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-33-ESD</subfield><subfield code="q">FLA_PDA_ESD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046127035 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:35:55Z |
institution | BVB |
isbn | 0128118415 9780128118412 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031507489 |
oclc_num | 963702404 |
open_access_boolean | |
physical | 1 online resource |
psigel | ZDB-33-ESD ZDB-33-ESD FLA_PDA_ESD |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Elsevier Science |
record_format | marc |
spelling | Yang, Yun Verfasser aut Temporal Data Mining via Unsupervised Ensemble Learning Elsevier Science 2016 1 online resource txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index Temporal Data Mining via Unsupervised Ensemble Learning provides the principle knowledge of temporal data mining in association with unsupervised ensemble learning and the fundamental problems of temporal data clustering from different perspectives. By providing three proposed ensemble approaches of temporal data clustering, this book presents a practical focus of fundamental knowledge and techniques, along with a rich blend of theory and practice. Furthermore, the book includes illustrations of the proposed approaches based on data and simulation experiments to demonstrate all methodologies, and is a guide to the proper usage of these methods. As there is nothing universal that can solve all problems, it is important to understand the characteristics of both clustering algorithms and the target temporal data so the correct approach can be selected for a given clustering problem. Scientists, researchers, and data analysts working with machine learning and data mining will benefit from this innovative book, as will undergraduate and graduate students following courses in computer science, engineering, and statistics. Includes fundamental concepts and knowledge, covering all key tasks and techniques of temporal data mining, i.e., temporal data representations, similarity measure, and mining tasks Concentrates on temporal data clustering tasks from different perspectives, including major algorithms from clustering algorithms and ensemble learning approaches Presents a rich blend of theory and practice, addressing seminal research ideas and looking at the technology from a practical point-of-view COMPUTERS / General bisacsh Data mining fast Machine learning fast Temporal databases fast Data mining Temporal databases Machine learning Erscheint auch als Druck-Ausgabe 0128116544 Erscheint auch als Druck-Ausgabe 9780128116548 http://www.sciencedirect.com/science/book/9780128116548 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Yang, Yun Temporal Data Mining via Unsupervised Ensemble Learning COMPUTERS / General bisacsh Data mining fast Machine learning fast Temporal databases fast Data mining Temporal databases Machine learning |
title | Temporal Data Mining via Unsupervised Ensemble Learning |
title_auth | Temporal Data Mining via Unsupervised Ensemble Learning |
title_exact_search | Temporal Data Mining via Unsupervised Ensemble Learning |
title_full | Temporal Data Mining via Unsupervised Ensemble Learning |
title_fullStr | Temporal Data Mining via Unsupervised Ensemble Learning |
title_full_unstemmed | Temporal Data Mining via Unsupervised Ensemble Learning |
title_short | Temporal Data Mining via Unsupervised Ensemble Learning |
title_sort | temporal data mining via unsupervised ensemble learning |
topic | COMPUTERS / General bisacsh Data mining fast Machine learning fast Temporal databases fast Data mining Temporal databases Machine learning |
topic_facet | COMPUTERS / General Data mining Machine learning Temporal databases |
url | http://www.sciencedirect.com/science/book/9780128116548 |
work_keys_str_mv | AT yangyun temporaldataminingviaunsupervisedensemblelearning |