A machine-learning approach to phishing detection and defense:
Phishing is one of the most widely-perpetrated forms of cyber attack, used to gather sensitive information such as credit card numbers, bank account numbers, and user logins and passwords, as well as other information entered via a web site. The authors of A Machine-Learning Approach to Phishing Det...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier
[2014]
|
Schlagworte: | |
Online-Zugang: | FLA01 Volltext |
Zusammenfassung: | Phishing is one of the most widely-perpetrated forms of cyber attack, used to gather sensitive information such as credit card numbers, bank account numbers, and user logins and passwords, as well as other information entered via a web site. The authors of A Machine-Learning Approach to Phishing Detetion and Defense have conducted research to demonstrate how a machine learning algorithm can be used as an effective and efficient tool in detecting phishing websites and designating them as information security threats. This methodology can prove useful to a wide variety of businesses and organizations who are seeking solutions to this long-standing threat. A Machine-Learning Approach to Phishing Detetion and Defense also provides information security researchers with a starting point for leveraging the machine algorithm approach as a solution to other information security threats |
Beschreibung: | Includes bibliographical references |
Beschreibung: | 1 online resource |
ISBN: | 1322480850 9781322480855 9780128029466 0128029463 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046126736 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 190827s2014 |||| o||u| ||||||eng d | ||
020 | |a 1322480850 |9 1-322-48085-0 | ||
020 | |a 9781322480855 |9 978-1-322-48085-5 | ||
020 | |a 9780128029466 |9 978-0-12-802946-6 | ||
020 | |a 0128029463 |9 0-12-802946-3 | ||
035 | |a (ZDB-33-ESD)ocn898326414 | ||
035 | |a (OCoLC)898326414 | ||
035 | |a (DE-599)BVBBV046126736 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 364.168 |2 23 | |
100 | 1 | |a Akanbi, Oluwatobi Ayodeji |e Verfasser |4 aut | |
245 | 1 | 0 | |a A machine-learning approach to phishing detection and defense |c Oluwatobi Ayodeji Akanbi, Iraj Sadegh Amiri, Elahe Fazeldehkordi |
264 | 1 | |a Amsterdam |b Elsevier |c [2014] | |
264 | 4 | |c © 2015 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references | ||
520 | |a Phishing is one of the most widely-perpetrated forms of cyber attack, used to gather sensitive information such as credit card numbers, bank account numbers, and user logins and passwords, as well as other information entered via a web site. The authors of A Machine-Learning Approach to Phishing Detetion and Defense have conducted research to demonstrate how a machine learning algorithm can be used as an effective and efficient tool in detecting phishing websites and designating them as information security threats. This methodology can prove useful to a wide variety of businesses and organizations who are seeking solutions to this long-standing threat. A Machine-Learning Approach to Phishing Detetion and Defense also provides information security researchers with a starting point for leveraging the machine algorithm approach as a solution to other information security threats | ||
650 | 7 | |a SOCIAL SCIENCE / Criminology |2 bisacsh | |
650 | 7 | |a Computer networks / Security measures |2 fast | |
650 | 7 | |a Phishing |2 fast | |
650 | 4 | |a Phishing | |
650 | 4 | |a Computer networks |x Security measures | |
700 | 1 | |a Amiri, Iraj Sadegh |d 1977- |4 aut | |
700 | 1 | |a Fazeldehkordi, Elahe |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780128029275 |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780128029275 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-33-ESD | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031507190 | ||
966 | e | |u http://www.sciencedirect.com/science/book/9780128029275 |l FLA01 |p ZDB-33-ESD |q FLA_PDA_ESD |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804180447132909568 |
---|---|
any_adam_object | |
author | Akanbi, Oluwatobi Ayodeji Amiri, Iraj Sadegh 1977- Fazeldehkordi, Elahe |
author_facet | Akanbi, Oluwatobi Ayodeji Amiri, Iraj Sadegh 1977- Fazeldehkordi, Elahe |
author_role | aut aut aut |
author_sort | Akanbi, Oluwatobi Ayodeji |
author_variant | o a a oa oaa i s a is isa e f ef |
building | Verbundindex |
bvnumber | BV046126736 |
collection | ZDB-33-ESD |
ctrlnum | (ZDB-33-ESD)ocn898326414 (OCoLC)898326414 (DE-599)BVBBV046126736 |
dewey-full | 364.168 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 364 - Criminology |
dewey-raw | 364.168 |
dewey-search | 364.168 |
dewey-sort | 3364.168 |
dewey-tens | 360 - Social problems and services; associations |
discipline | Rechtswissenschaft |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02611nmm a2200469zc 4500</leader><controlfield tag="001">BV046126736</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190827s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1322480850</subfield><subfield code="9">1-322-48085-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781322480855</subfield><subfield code="9">978-1-322-48085-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128029466</subfield><subfield code="9">978-0-12-802946-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0128029463</subfield><subfield code="9">0-12-802946-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-ESD)ocn898326414</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)898326414</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046126736</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">364.168</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Akanbi, Oluwatobi Ayodeji</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A machine-learning approach to phishing detection and defense</subfield><subfield code="c">Oluwatobi Ayodeji Akanbi, Iraj Sadegh Amiri, Elahe Fazeldehkordi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Phishing is one of the most widely-perpetrated forms of cyber attack, used to gather sensitive information such as credit card numbers, bank account numbers, and user logins and passwords, as well as other information entered via a web site. The authors of A Machine-Learning Approach to Phishing Detetion and Defense have conducted research to demonstrate how a machine learning algorithm can be used as an effective and efficient tool in detecting phishing websites and designating them as information security threats. This methodology can prove useful to a wide variety of businesses and organizations who are seeking solutions to this long-standing threat. A Machine-Learning Approach to Phishing Detetion and Defense also provides information security researchers with a starting point for leveraging the machine algorithm approach as a solution to other information security threats</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SOCIAL SCIENCE / Criminology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer networks / Security measures</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Phishing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phishing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer networks</subfield><subfield code="x">Security measures</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Amiri, Iraj Sadegh</subfield><subfield code="d">1977-</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fazeldehkordi, Elahe</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780128029275</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780128029275</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031507190</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.sciencedirect.com/science/book/9780128029275</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-33-ESD</subfield><subfield code="q">FLA_PDA_ESD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046126736 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:35:54Z |
institution | BVB |
isbn | 1322480850 9781322480855 9780128029466 0128029463 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031507190 |
oclc_num | 898326414 |
open_access_boolean | |
physical | 1 online resource |
psigel | ZDB-33-ESD ZDB-33-ESD FLA_PDA_ESD |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Elsevier |
record_format | marc |
spelling | Akanbi, Oluwatobi Ayodeji Verfasser aut A machine-learning approach to phishing detection and defense Oluwatobi Ayodeji Akanbi, Iraj Sadegh Amiri, Elahe Fazeldehkordi Amsterdam Elsevier [2014] © 2015 1 online resource txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references Phishing is one of the most widely-perpetrated forms of cyber attack, used to gather sensitive information such as credit card numbers, bank account numbers, and user logins and passwords, as well as other information entered via a web site. The authors of A Machine-Learning Approach to Phishing Detetion and Defense have conducted research to demonstrate how a machine learning algorithm can be used as an effective and efficient tool in detecting phishing websites and designating them as information security threats. This methodology can prove useful to a wide variety of businesses and organizations who are seeking solutions to this long-standing threat. A Machine-Learning Approach to Phishing Detetion and Defense also provides information security researchers with a starting point for leveraging the machine algorithm approach as a solution to other information security threats SOCIAL SCIENCE / Criminology bisacsh Computer networks / Security measures fast Phishing fast Phishing Computer networks Security measures Amiri, Iraj Sadegh 1977- aut Fazeldehkordi, Elahe aut Erscheint auch als Druck-Ausgabe 9780128029275 http://www.sciencedirect.com/science/book/9780128029275 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Akanbi, Oluwatobi Ayodeji Amiri, Iraj Sadegh 1977- Fazeldehkordi, Elahe A machine-learning approach to phishing detection and defense SOCIAL SCIENCE / Criminology bisacsh Computer networks / Security measures fast Phishing fast Phishing Computer networks Security measures |
title | A machine-learning approach to phishing detection and defense |
title_auth | A machine-learning approach to phishing detection and defense |
title_exact_search | A machine-learning approach to phishing detection and defense |
title_full | A machine-learning approach to phishing detection and defense Oluwatobi Ayodeji Akanbi, Iraj Sadegh Amiri, Elahe Fazeldehkordi |
title_fullStr | A machine-learning approach to phishing detection and defense Oluwatobi Ayodeji Akanbi, Iraj Sadegh Amiri, Elahe Fazeldehkordi |
title_full_unstemmed | A machine-learning approach to phishing detection and defense Oluwatobi Ayodeji Akanbi, Iraj Sadegh Amiri, Elahe Fazeldehkordi |
title_short | A machine-learning approach to phishing detection and defense |
title_sort | a machine learning approach to phishing detection and defense |
topic | SOCIAL SCIENCE / Criminology bisacsh Computer networks / Security measures fast Phishing fast Phishing Computer networks Security measures |
topic_facet | SOCIAL SCIENCE / Criminology Computer networks / Security measures Phishing Computer networks Security measures |
url | http://www.sciencedirect.com/science/book/9780128029275 |
work_keys_str_mv | AT akanbioluwatobiayodeji amachinelearningapproachtophishingdetectionanddefense AT amiriirajsadegh amachinelearningapproachtophishingdetectionanddefense AT fazeldehkordielahe amachinelearningapproachtophishingdetectionanddefense |