Nature-inspired optimization algorithms:
Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-cho...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier
2014
|
Schriftenreihe: | Elsevier insights
|
Schlagworte: | |
Online-Zugang: | FLA01 Volltext |
Zusammenfassung: | Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature. Provides a theoretical understanding as well as practical implementation hints. Provides a step-by-step introduction to each algorithm |
Beschreibung: | Includes bibliographical references |
Beschreibung: | 1 online resource |
ISBN: | 9780124167452 0124167454 0124167438 9780124167438 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046126337 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 190827s2014 |||| o||u| ||||||eng d | ||
020 | |a 9780124167452 |9 978-0-12-416745-2 | ||
020 | |a 0124167454 |9 0-12-416745-4 | ||
020 | |a 0124167438 |9 0-12-416743-8 | ||
020 | |a 9780124167438 |9 978-0-12-416743-8 | ||
035 | |a (ZDB-33-ESD)ocn866583452 | ||
035 | |a (OCoLC)866583452 | ||
035 | |a (DE-599)BVBBV046126337 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 519.6 |2 23 | |
100 | 1 | |a Yang, Xin-She |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nature-inspired optimization algorithms |c by Xin-She Yang |
264 | 1 | |a Amsterdam |b Elsevier |c 2014 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Elsevier insights | |
500 | |a Includes bibliographical references | ||
520 | |a Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature. Provides a theoretical understanding as well as practical implementation hints. Provides a step-by-step introduction to each algorithm | ||
650 | 7 | |a Algorithms |2 fast | |
650 | 7 | |a Mathematical optimization |2 fast | |
650 | 7 | |a Optimierung |2 gnd | |
650 | 7 | |a Algorithmus |2 gnd | |
650 | 7 | |a Bionik |2 gnd | |
650 | 7 | |a Evolutionärer Algorithmus |2 gnd | |
650 | 7 | |a Schwarmintelligenz |2 gnd | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Algorithms | |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Natur |0 (DE-588)4041358-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | 1 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | 2 | |a Natur |0 (DE-588)4041358-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780124167438 |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780124167438 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-33-ESD | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031506790 | ||
347 | |a text file |2 rda | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.sciencedirect.com/science/book/9780124167438 |l FLA01 |p ZDB-33-ESD |q FLA_PDA_ESD |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804180446327603200 |
---|---|
any_adam_object | |
author | Yang, Xin-She |
author_facet | Yang, Xin-She |
author_role | aut |
author_sort | Yang, Xin-She |
author_variant | x s y xsy |
building | Verbundindex |
bvnumber | BV046126337 |
collection | ZDB-33-ESD |
ctrlnum | (ZDB-33-ESD)ocn866583452 (OCoLC)866583452 (DE-599)BVBBV046126337 |
dewey-full | 519.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.6 |
dewey-search | 519.6 |
dewey-sort | 3519.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03435nmm a2200637zc 4500</leader><controlfield tag="001">BV046126337</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190827s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780124167452</subfield><subfield code="9">978-0-12-416745-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0124167454</subfield><subfield code="9">0-12-416745-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0124167438</subfield><subfield code="9">0-12-416743-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780124167438</subfield><subfield code="9">978-0-12-416743-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-ESD)ocn866583452</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)866583452</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046126337</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Xin-She</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nature-inspired optimization algorithms</subfield><subfield code="c">by Xin-She Yang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Elsevier insights</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature. Provides a theoretical understanding as well as practical implementation hints. Provides a step-by-step introduction to each algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical optimization</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimierung</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bionik</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Evolutionärer Algorithmus</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Schwarmintelligenz</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Natur</subfield><subfield code="0">(DE-588)4041358-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Natur</subfield><subfield code="0">(DE-588)4041358-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780124167438</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780124167438</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031506790</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.sciencedirect.com/science/book/9780124167438</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-33-ESD</subfield><subfield code="q">FLA_PDA_ESD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046126337 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:35:53Z |
institution | BVB |
isbn | 9780124167452 0124167454 0124167438 9780124167438 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031506790 |
oclc_num | 866583452 |
open_access_boolean | |
physical | 1 online resource |
psigel | ZDB-33-ESD ZDB-33-ESD FLA_PDA_ESD |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Elsevier |
record_format | marc |
series2 | Elsevier insights |
spelling | Yang, Xin-She Verfasser aut Nature-inspired optimization algorithms by Xin-She Yang Amsterdam Elsevier 2014 1 online resource txt rdacontent c rdamedia cr rdacarrier Elsevier insights Includes bibliographical references Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature. Provides a theoretical understanding as well as practical implementation hints. Provides a step-by-step introduction to each algorithm Algorithms fast Mathematical optimization fast Optimierung gnd Algorithmus gnd Bionik gnd Evolutionärer Algorithmus gnd Schwarmintelligenz gnd Algorithms Mathematical optimization Algorithmus (DE-588)4001183-5 gnd rswk-swf Natur (DE-588)4041358-5 gnd rswk-swf Optimierung (DE-588)4043664-0 gnd rswk-swf Algorithmus (DE-588)4001183-5 s Optimierung (DE-588)4043664-0 s Natur (DE-588)4041358-5 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9780124167438 http://www.sciencedirect.com/science/book/9780124167438 Verlag URL des Erstveröffentlichers Volltext text file rda 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Yang, Xin-She Nature-inspired optimization algorithms Algorithms fast Mathematical optimization fast Optimierung gnd Algorithmus gnd Bionik gnd Evolutionärer Algorithmus gnd Schwarmintelligenz gnd Algorithms Mathematical optimization Algorithmus (DE-588)4001183-5 gnd Natur (DE-588)4041358-5 gnd Optimierung (DE-588)4043664-0 gnd |
subject_GND | (DE-588)4001183-5 (DE-588)4041358-5 (DE-588)4043664-0 |
title | Nature-inspired optimization algorithms |
title_auth | Nature-inspired optimization algorithms |
title_exact_search | Nature-inspired optimization algorithms |
title_full | Nature-inspired optimization algorithms by Xin-She Yang |
title_fullStr | Nature-inspired optimization algorithms by Xin-She Yang |
title_full_unstemmed | Nature-inspired optimization algorithms by Xin-She Yang |
title_short | Nature-inspired optimization algorithms |
title_sort | nature inspired optimization algorithms |
topic | Algorithms fast Mathematical optimization fast Optimierung gnd Algorithmus gnd Bionik gnd Evolutionärer Algorithmus gnd Schwarmintelligenz gnd Algorithms Mathematical optimization Algorithmus (DE-588)4001183-5 gnd Natur (DE-588)4041358-5 gnd Optimierung (DE-588)4043664-0 gnd |
topic_facet | Algorithms Mathematical optimization Optimierung Algorithmus Bionik Evolutionärer Algorithmus Schwarmintelligenz Natur |
url | http://www.sciencedirect.com/science/book/9780124167438 |
work_keys_str_mv | AT yangxinshe natureinspiredoptimizationalgorithms |