Learn computer vision using OpenCV: with deep learning CNNs and RNNs
Chapter 1: Artificial Intelligence and Computer Vision -- Chapter 2: OpenCV with Python -- Chapter 3: Deep learning for Computer Vision -- Chapter 4: Image Manipulation and Segmentation -- Chapter 5 : Object Detection and Recognition -- Chapter 6: Motion Analysis and Tracking
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
[Berkeley, CA]
Apress
[2019]
|
Schlagworte: | |
Zusammenfassung: | Chapter 1: Artificial Intelligence and Computer Vision -- Chapter 2: OpenCV with Python -- Chapter 3: Deep learning for Computer Vision -- Chapter 4: Image Manipulation and Segmentation -- Chapter 5 : Object Detection and Recognition -- Chapter 6: Motion Analysis and Tracking Build practical applications of computer vision using the OpenCV library with Python. This book discusses different facets of computer vision such as image and object detection, tracking and motion analysis and their applications with examples. The author starts with an introduction to computer vision followed by setting up OpenCV from scratch using Python. The next section discusses specialized image processing and segmentation and how images are stored and processed by a computer. This involves pattern recognition and image tagging using the OpenCV library. Next, you’ll work with object detection, video storage and interpretation, and human detection using OpenCV. Tracking and motion is also discussed in detail. The book also discusses creating complex deep learning models with CNN and RNN. The author finally concludes with recent applications and trends in computer vision. After reading this book, you will be able to understand and implement computer vision and its applications with OpenCV using Python. You will also be able to create deep learning models with CNN and RNN and understand how these cutting-edge deep learning architectures work. You will: Understand what computer vision is, and its overall application in intelligent automation systems Discover the deep learning techniques required to build computer vision applications Build complex computer vision applications using the latest techniques in OpenCV, Python, and NumPy Create practical applications and implementations such as face detection and recognition, handwriting recognition, object detection, and tracking and motion analysis |
Beschreibung: | xx, 151 Seiten Illustrationen |
ISBN: | 9781484242605 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046112959 | ||
003 | DE-604 | ||
005 | 20191010 | ||
007 | t | ||
008 | 190822s2019 xxua||| |||| 00||| eng d | ||
020 | |a 9781484242605 |9 978-1-4842-4260-5 | ||
035 | |a (OCoLC)1122697166 | ||
035 | |a (DE-599)KXP1669242501 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-91G | ||
050 | 0 | |a Q334-342 | |
082 | 0 | |a 006.3 |2 23 | |
084 | |a DAT 306f |2 stub | ||
084 | |a DAT 760f |2 stub | ||
100 | 1 | |a Gollapudi, Sunila |e Verfasser |0 (DE-588)1097414108 |4 aut | |
245 | 1 | 0 | |a Learn computer vision using OpenCV |b with deep learning CNNs and RNNs |c Sunila Gollapudi |
264 | 1 | |a [Berkeley, CA] |b Apress |c [2019] | |
300 | |a xx, 151 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 3 | |a Chapter 1: Artificial Intelligence and Computer Vision -- Chapter 2: OpenCV with Python -- Chapter 3: Deep learning for Computer Vision -- Chapter 4: Image Manipulation and Segmentation -- Chapter 5 : Object Detection and Recognition -- Chapter 6: Motion Analysis and Tracking | |
520 | 3 | |a Build practical applications of computer vision using the OpenCV library with Python. This book discusses different facets of computer vision such as image and object detection, tracking and motion analysis and their applications with examples. The author starts with an introduction to computer vision followed by setting up OpenCV from scratch using Python. The next section discusses specialized image processing and segmentation and how images are stored and processed by a computer. This involves pattern recognition and image tagging using the OpenCV library. Next, you’ll work with object detection, video storage and interpretation, and human detection using OpenCV. Tracking and motion is also discussed in detail. The book also discusses creating complex deep learning models with CNN and RNN. The author finally concludes with recent applications and trends in computer vision. After reading this book, you will be able to understand and implement computer vision and its applications with OpenCV using Python. You will also be able to create deep learning models with CNN and RNN and understand how these cutting-edge deep learning architectures work. You will: Understand what computer vision is, and its overall application in intelligent automation systems Discover the deep learning techniques required to build computer vision applications Build complex computer vision applications using the latest techniques in OpenCV, Python, and NumPy Create practical applications and implementations such as face detection and recognition, handwriting recognition, object detection, and tracking and motion analysis | |
650 | 0 | 7 | |a OpenCV |0 (DE-588)1038770092 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
653 | 0 | |a Artificial intelligence | |
653 | 0 | |a Python (Computer program language) | |
653 | 0 | |a Open source software | |
653 | 0 | |a Computer programming | |
653 | 0 | |a Artificial Intelligence | |
689 | 0 | 0 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |D s |
689 | 0 | 1 | |a OpenCV |0 (DE-588)1038770092 |D s |
689 | 0 | 2 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | 3 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4842-4261-2 |
999 | |a oai:aleph.bib-bvb.de:BVB01-031493516 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804180428925435904 |
---|---|
any_adam_object | |
author | Gollapudi, Sunila |
author_GND | (DE-588)1097414108 |
author_facet | Gollapudi, Sunila |
author_role | aut |
author_sort | Gollapudi, Sunila |
author_variant | s g sg |
building | Verbundindex |
bvnumber | BV046112959 |
callnumber-first | Q - Science |
callnumber-label | Q334-342 |
callnumber-raw | Q334-342 |
callnumber-search | Q334-342 |
callnumber-sort | Q 3334 3342 |
callnumber-subject | Q - General Science |
classification_tum | DAT 306f DAT 760f |
ctrlnum | (OCoLC)1122697166 (DE-599)KXP1669242501 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03726nam a2200529 c 4500</leader><controlfield tag="001">BV046112959</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191010 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">190822s2019 xxua||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484242605</subfield><subfield code="9">978-1-4842-4260-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1122697166</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1669242501</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q334-342</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 306f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 760f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gollapudi, Sunila</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1097414108</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learn computer vision using OpenCV</subfield><subfield code="b">with deep learning CNNs and RNNs</subfield><subfield code="c">Sunila Gollapudi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Berkeley, CA]</subfield><subfield code="b">Apress</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xx, 151 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Chapter 1: Artificial Intelligence and Computer Vision -- Chapter 2: OpenCV with Python -- Chapter 3: Deep learning for Computer Vision -- Chapter 4: Image Manipulation and Segmentation -- Chapter 5 : Object Detection and Recognition -- Chapter 6: Motion Analysis and Tracking</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Build practical applications of computer vision using the OpenCV library with Python. This book discusses different facets of computer vision such as image and object detection, tracking and motion analysis and their applications with examples. The author starts with an introduction to computer vision followed by setting up OpenCV from scratch using Python. The next section discusses specialized image processing and segmentation and how images are stored and processed by a computer. This involves pattern recognition and image tagging using the OpenCV library. Next, you’ll work with object detection, video storage and interpretation, and human detection using OpenCV. Tracking and motion is also discussed in detail. The book also discusses creating complex deep learning models with CNN and RNN. The author finally concludes with recent applications and trends in computer vision. After reading this book, you will be able to understand and implement computer vision and its applications with OpenCV using Python. You will also be able to create deep learning models with CNN and RNN and understand how these cutting-edge deep learning architectures work. You will: Understand what computer vision is, and its overall application in intelligent automation systems Discover the deep learning techniques required to build computer vision applications Build complex computer vision applications using the latest techniques in OpenCV, Python, and NumPy Create practical applications and implementations such as face detection and recognition, handwriting recognition, object detection, and tracking and motion analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">OpenCV</subfield><subfield code="0">(DE-588)1038770092</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Open source software</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer programming</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">OpenCV</subfield><subfield code="0">(DE-588)1038770092</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4842-4261-2</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031493516</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV046112959 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:35:37Z |
institution | BVB |
isbn | 9781484242605 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031493516 |
oclc_num | 1122697166 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | xx, 151 Seiten Illustrationen |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Apress |
record_format | marc |
spelling | Gollapudi, Sunila Verfasser (DE-588)1097414108 aut Learn computer vision using OpenCV with deep learning CNNs and RNNs Sunila Gollapudi [Berkeley, CA] Apress [2019] xx, 151 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Chapter 1: Artificial Intelligence and Computer Vision -- Chapter 2: OpenCV with Python -- Chapter 3: Deep learning for Computer Vision -- Chapter 4: Image Manipulation and Segmentation -- Chapter 5 : Object Detection and Recognition -- Chapter 6: Motion Analysis and Tracking Build practical applications of computer vision using the OpenCV library with Python. This book discusses different facets of computer vision such as image and object detection, tracking and motion analysis and their applications with examples. The author starts with an introduction to computer vision followed by setting up OpenCV from scratch using Python. The next section discusses specialized image processing and segmentation and how images are stored and processed by a computer. This involves pattern recognition and image tagging using the OpenCV library. Next, you’ll work with object detection, video storage and interpretation, and human detection using OpenCV. Tracking and motion is also discussed in detail. The book also discusses creating complex deep learning models with CNN and RNN. The author finally concludes with recent applications and trends in computer vision. After reading this book, you will be able to understand and implement computer vision and its applications with OpenCV using Python. You will also be able to create deep learning models with CNN and RNN and understand how these cutting-edge deep learning architectures work. You will: Understand what computer vision is, and its overall application in intelligent automation systems Discover the deep learning techniques required to build computer vision applications Build complex computer vision applications using the latest techniques in OpenCV, Python, and NumPy Create practical applications and implementations such as face detection and recognition, handwriting recognition, object detection, and tracking and motion analysis OpenCV (DE-588)1038770092 gnd rswk-swf Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf Maschinelles Sehen (DE-588)4129594-8 gnd rswk-swf Deep learning (DE-588)1135597375 gnd rswk-swf Artificial intelligence Python (Computer program language) Open source software Computer programming Artificial Intelligence Maschinelles Sehen (DE-588)4129594-8 s OpenCV (DE-588)1038770092 s Deep learning (DE-588)1135597375 s Python Programmiersprache (DE-588)4434275-5 s 1\p DE-604 Erscheint auch als Online-Ausgabe 978-1-4842-4261-2 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gollapudi, Sunila Learn computer vision using OpenCV with deep learning CNNs and RNNs OpenCV (DE-588)1038770092 gnd Python Programmiersprache (DE-588)4434275-5 gnd Maschinelles Sehen (DE-588)4129594-8 gnd Deep learning (DE-588)1135597375 gnd |
subject_GND | (DE-588)1038770092 (DE-588)4434275-5 (DE-588)4129594-8 (DE-588)1135597375 |
title | Learn computer vision using OpenCV with deep learning CNNs and RNNs |
title_auth | Learn computer vision using OpenCV with deep learning CNNs and RNNs |
title_exact_search | Learn computer vision using OpenCV with deep learning CNNs and RNNs |
title_full | Learn computer vision using OpenCV with deep learning CNNs and RNNs Sunila Gollapudi |
title_fullStr | Learn computer vision using OpenCV with deep learning CNNs and RNNs Sunila Gollapudi |
title_full_unstemmed | Learn computer vision using OpenCV with deep learning CNNs and RNNs Sunila Gollapudi |
title_short | Learn computer vision using OpenCV |
title_sort | learn computer vision using opencv with deep learning cnns and rnns |
title_sub | with deep learning CNNs and RNNs |
topic | OpenCV (DE-588)1038770092 gnd Python Programmiersprache (DE-588)4434275-5 gnd Maschinelles Sehen (DE-588)4129594-8 gnd Deep learning (DE-588)1135597375 gnd |
topic_facet | OpenCV Python Programmiersprache Maschinelles Sehen Deep learning |
work_keys_str_mv | AT gollapudisunila learncomputervisionusingopencvwithdeeplearningcnnsandrnns |