Self-learning and adaptive algorithms for business applications: a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions
In this guide designed for researchers and students of computer science, readers will find a resource for how to apply methods that work on real-life problems to their challenging applications, and a go-to work that makes fuzzy clustering issues and aspects clear
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Bingley, UK
Emerald Publishing
2019
|
Ausgabe: | First edition |
Schriftenreihe: | Emerald points
|
Schlagworte: | |
Online-Zugang: | DE-92 DE-703 DE-824 DE-634 DE-1043 DE-M347 DE-863 DE-862 DE-523 DE-91 DE-473 DE-19 DE-355 DE-703 DE-20 DE-706 DE-824 DE-29 DE-739 Volltext |
Zusammenfassung: | In this guide designed for researchers and students of computer science, readers will find a resource for how to apply methods that work on real-life problems to their challenging applications, and a go-to work that makes fuzzy clustering issues and aspects clear |
Beschreibung: | 1 Online-Ressource (vii, 111 Seiten) |
ISBN: | 9781838671716 1838671714 9781838671730 1838671730 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV046111829 | ||
003 | DE-604 | ||
005 | 20240322 | ||
007 | cr|uuu---uuuuu | ||
008 | 190821s2019 |||| o||u| ||||||eng d | ||
020 | |a 9781838671716 |c Online |9 978-1-83867-171-6 | ||
020 | |a 1838671714 |9 1-83867-171-4 | ||
020 | |a 9781838671730 |9 978-1-83867-173-0 | ||
020 | |a 1838671730 |9 1838671730 | ||
024 | 7 | |a 10.1108/9781838671716 |2 doi | |
035 | |a (OCoLC)1119106405 | ||
035 | |a (DE-599)BVBBV046111829 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-1043 |a DE-M347 |a DE-92 |a DE-863 |a DE-862 |a DE-523 |a DE-91 |a DE-473 |a DE-19 |a DE-355 |a DE-703 |a DE-20 |a DE-706 |a DE-824 |a DE-29 |a DE-739 | ||
100 | 1 | |a Hu, Zhengbing |e Verfasser |4 aut | |
245 | 1 | 0 | |a Self-learning and adaptive algorithms for business applications |b a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions |c by Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii K. Tyshchenko |
250 | |a First edition | ||
264 | 1 | |a Bingley, UK |b Emerald Publishing |c 2019 | |
300 | |a 1 Online-Ressource (vii, 111 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Emerald points | |
505 | 8 | |a Contents: Chapter 1 Review of the Problem Area; 1.1. Learning and Self-learning Procedures; 1.2. Clustering; 1.2.1. Clustering Methods; 1.3. Fuzzy Sets and Fuzzy Logic; 1.3.1. Fuzzy Inference Systems and Fuzzy Control; 1.3.2. Type-2 Fuzzy Logic; 1.3.2.1. Interval Type-2 Fuzzy Sets; 1.3.2.2. Model Reduction; 1.3.2.3. Type-2 Fuzzy Clustering; 1.4. Neural Networks and Their Learning Methods; 1.4.1. Artificial Neural Networks; 1.4.2. Neural Networks' Learning | |
505 | 8 | |a 1.4.3. Recurrent Neural Networks1.5. Neuro-fuzzy Systems; Chapter 2 Adaptive Methods of Fuzzy Clustering; 2.1. An Objective Function for Fuzzy Clustering; 2.2. Optimization of the Objective Function; 2.3. A Linear Variable Fuzzifier; 2.3.1. Adaptive Fuzzy Clustering with a Variable Fuzzifier; 2.3.2. Possibilistic Fuzzy Clustering with a Variable Fuzzifier; 2.3.3. A Suppression Procedure for Fuzzy Clustering; 2.4. Methods Based on the Gustafson-Kessel Procedure; 2.4.1. The Basic Gustafson-Kessel Method; 2.4.2. A Possibilistic Version of the Gustafson-Kessel Method | |
505 | 8 | |a 2.4.3. Adaptive Versions of the Gustafson-Kessel Algorithm2.5. A Robust Fuzzy Clustering Method Based on the Cauchy Criterion; 2.5.1. The Probabilistic Approach; 2.5.2. The Possibilistic Approach; Chapter 3 Kohonen Maps and Their Ensembles for Fuzzy Clustering Tasks; 3.1. The Competitive Learning; 3.2. Kohonen Neural Networks; 3.3. Modifications of Kohonen Self-organizing Maps; 3.4. Ensembles and Their Learning Methods; 3.4.1. Reasons for Using Ensembles; 3.4.2. Basic Notions of the Theory of Collective Output Systems; 3.4.2.1. Confidence; 3.4.2.2. Diversification | |
505 | 8 | |a 3.4.2.3. Incremental Ensembles' Learning3.4.3. Methods for Building Ensembles; 3.4.3.1. An Algebraic Combination; 3.4.3.2. A Weighted Combination; 3.4.3.3. Complex Systems of the Collective Output; 3.5. Ensembles of Neuro-fuzzy Kohonen Networks; 3.6. Fuzzy Type-2 Clustering Using Ensembles of Modified Neuro-fuzzy Kohonen Networks; Chapter 4 Simulation Results and Solutions for Practical Tasks; 4.1. Simulation of the Adaptive Neuro-fuzzy Kohonen Network with a Variable Fuzzifier; 4.1.1. Comparative Efficiency; 4.1.2. The Fuzzifier's Influence; 4.1.3. Influence of the Suppression Parameter | |
505 | 8 | |a 4.2. Simulation of Adaptive Versions the Gustafson-Kessel Algorithm4.3. Simulation of the Robust Clustering Method Based on the Cauchy Criterion; 4.4. Solving the Task of Automated Cataloging of Illustrative Materials; Conclusion; References | |
520 | 3 | |a In this guide designed for researchers and students of computer science, readers will find a resource for how to apply methods that work on real-life problems to their challenging applications, and a go-to work that makes fuzzy clustering issues and aspects clear | |
653 | 0 | |a Electronic data processing | |
653 | 0 | |a Business / Data processing | |
653 | 0 | |a Fuzzy systems | |
653 | 0 | |a BUSINESS & ECONOMICS / Industrial Management | |
653 | 0 | |a BUSINESS & ECONOMICS / Management | |
653 | 0 | |a BUSINESS & ECONOMICS / Management Science | |
653 | 0 | |a BUSINESS & ECONOMICS / Organizational Behavior | |
653 | 0 | |a Business / Data processing | |
653 | 0 | |a Electronic data processing | |
653 | 0 | |a Fuzzy systems | |
653 | 6 | |a Electronic books | |
653 | 6 | |a Electronic books | |
700 | 1 | |a Bodyanskiy, Yevgeniy V. |e Sonstige |4 oth | |
700 | 1 | |a Tyshchenko, Oleksii |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-83867-174-7 |
856 | 4 | 0 | |u https://www.emerald.com/insight/publication/doi/10.1108/9781838671716 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-55-BME |a ZDB-1-EPB | ||
940 | 1 | |q ZDB-55-BME19 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-031492417 | |
966 | e | |u https://doi.org/10.1108/9781838671716 |l DE-92 |p ZDB-55-BME |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1108/9781838671716 |l DE-703 |p ZDB-55-BME |q ZDB-55-BME19 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1108/9781838671716 |l DE-824 |p ZDB-55-BME |x Verlag |3 Volltext | |
966 | e | |u https://www.emerald.com/insight/publication/doi/10.1108/9781838671716 |l DE-634 |p ZDB-1-EPB |x Verlag |3 Volltext | |
966 | e | |u https://www.emerald.com/insight/publication/doi/10.1108/9781838671716 |l DE-1043 |p ZDB-1-EPB |x Verlag |3 Volltext | |
966 | e | |u https://www.emerald.com/insight/publication/doi/10.1108/9781838671716 |l DE-M347 |p ZDB-1-EPB |x Verlag |3 Volltext | |
966 | e | |u https://www.emerald.com/insight/publication/doi/10.1108/9781838671716 |l DE-863 |p ZDB-55-BME |q ZDB-55-BME19 |x Verlag |3 Volltext | |
966 | e | |u https://www.emerald.com/insight/publication/doi/10.1108/9781838671716 |l DE-862 |p ZDB-55-BME |x Verlag |3 Volltext | |
966 | e | |u https://www.emerald.com/insight/publication/doi/10.1108/9781838671716 |l DE-523 |p ZDB-1-EPB |x Verlag |3 Volltext | |
966 | e | |u https://www.emerald.com/insight/publication/doi/10.1108/9781838671716 |l DE-91 |p ZDB-1-EPB |x Verlag |3 Volltext | |
966 | e | |u https://www.emerald.com/insight/publication/doi/10.1108/9781838671716 |l DE-473 |p ZDB-1-EPB |x Verlag |3 Volltext | |
966 | e | |u https://www.emerald.com/insight/publication/doi/10.1108/9781838671716 |l DE-19 |p ZDB-1-EPB |x Verlag |3 Volltext | |
966 | e | |u https://www.emerald.com/insight/publication/doi/10.1108/9781838671716 |l DE-355 |p ZDB-1-EPB |x Verlag |3 Volltext | |
966 | e | |u https://www.emerald.com/insight/publication/doi/10.1108/9781838671716 |l DE-703 |p ZDB-1-EPB |x Verlag |3 Volltext | |
966 | e | |u https://www.emerald.com/insight/publication/doi/10.1108/9781838671716 |l DE-20 |p ZDB-1-EPB |x Verlag |3 Volltext | |
966 | e | |u https://www.emerald.com/insight/publication/doi/10.1108/9781838671716 |l DE-706 |p ZDB-1-EPB |x Verlag |3 Volltext | |
966 | e | |u https://www.emerald.com/insight/publication/doi/10.1108/9781838671716 |l DE-824 |p ZDB-1-EPB |x Verlag |3 Volltext | |
966 | e | |u https://www.emerald.com/insight/publication/doi/10.1108/9781838671716 |l DE-29 |p ZDB-1-EPB |x Verlag |3 Volltext | |
966 | e | |u https://www.emerald.com/insight/publication/doi/10.1108/9781838671716 |l DE-29 |p ZDB-55-BME |q UER_Paketkauf_2019 |x Verlag |3 Volltext | |
966 | e | |u https://www.emerald.com/insight/publication/doi/10.1108/9781838671716 |l DE-739 |p ZDB-1-EPB |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 736947 |
---|---|
_version_ | 1806528981582741504 |
adam_text | |
any_adam_object | |
author | Hu, Zhengbing |
author_facet | Hu, Zhengbing |
author_role | aut |
author_sort | Hu, Zhengbing |
author_variant | z h zh |
building | Verbundindex |
bvnumber | BV046111829 |
collection | ZDB-55-BME ZDB-1-EPB |
contents | Contents: Chapter 1 Review of the Problem Area; 1.1. Learning and Self-learning Procedures; 1.2. Clustering; 1.2.1. Clustering Methods; 1.3. Fuzzy Sets and Fuzzy Logic; 1.3.1. Fuzzy Inference Systems and Fuzzy Control; 1.3.2. Type-2 Fuzzy Logic; 1.3.2.1. Interval Type-2 Fuzzy Sets; 1.3.2.2. Model Reduction; 1.3.2.3. Type-2 Fuzzy Clustering; 1.4. Neural Networks and Their Learning Methods; 1.4.1. Artificial Neural Networks; 1.4.2. Neural Networks' Learning 1.4.3. Recurrent Neural Networks1.5. Neuro-fuzzy Systems; Chapter 2 Adaptive Methods of Fuzzy Clustering; 2.1. An Objective Function for Fuzzy Clustering; 2.2. Optimization of the Objective Function; 2.3. A Linear Variable Fuzzifier; 2.3.1. Adaptive Fuzzy Clustering with a Variable Fuzzifier; 2.3.2. Possibilistic Fuzzy Clustering with a Variable Fuzzifier; 2.3.3. A Suppression Procedure for Fuzzy Clustering; 2.4. Methods Based on the Gustafson-Kessel Procedure; 2.4.1. The Basic Gustafson-Kessel Method; 2.4.2. A Possibilistic Version of the Gustafson-Kessel Method 2.4.3. Adaptive Versions of the Gustafson-Kessel Algorithm2.5. A Robust Fuzzy Clustering Method Based on the Cauchy Criterion; 2.5.1. The Probabilistic Approach; 2.5.2. The Possibilistic Approach; Chapter 3 Kohonen Maps and Their Ensembles for Fuzzy Clustering Tasks; 3.1. The Competitive Learning; 3.2. Kohonen Neural Networks; 3.3. Modifications of Kohonen Self-organizing Maps; 3.4. Ensembles and Their Learning Methods; 3.4.1. Reasons for Using Ensembles; 3.4.2. Basic Notions of the Theory of Collective Output Systems; 3.4.2.1. Confidence; 3.4.2.2. Diversification 3.4.2.3. Incremental Ensembles' Learning3.4.3. Methods for Building Ensembles; 3.4.3.1. An Algebraic Combination; 3.4.3.2. A Weighted Combination; 3.4.3.3. Complex Systems of the Collective Output; 3.5. Ensembles of Neuro-fuzzy Kohonen Networks; 3.6. Fuzzy Type-2 Clustering Using Ensembles of Modified Neuro-fuzzy Kohonen Networks; Chapter 4 Simulation Results and Solutions for Practical Tasks; 4.1. Simulation of the Adaptive Neuro-fuzzy Kohonen Network with a Variable Fuzzifier; 4.1.1. Comparative Efficiency; 4.1.2. The Fuzzifier's Influence; 4.1.3. Influence of the Suppression Parameter 4.2. Simulation of Adaptive Versions the Gustafson-Kessel Algorithm4.3. Simulation of the Robust Clustering Method Based on the Cauchy Criterion; 4.4. Solving the Task of Automated Cataloging of Illustrative Materials; Conclusion; References |
ctrlnum | (OCoLC)1119106405 (DE-599)BVBBV046111829 |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000 c 4500</leader><controlfield tag="001">BV046111829</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240322</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190821s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781838671716</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-83867-171-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1838671714</subfield><subfield code="9">1-83867-171-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781838671730</subfield><subfield code="9">978-1-83867-173-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1838671730</subfield><subfield code="9">1838671730</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1108/9781838671716</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1119106405</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046111829</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, Zhengbing</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-learning and adaptive algorithms for business applications</subfield><subfield code="b">a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions</subfield><subfield code="c">by Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii K. Tyshchenko</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Bingley, UK</subfield><subfield code="b">Emerald Publishing</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 111 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Emerald points</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Contents: Chapter 1 Review of the Problem Area; 1.1. Learning and Self-learning Procedures; 1.2. Clustering; 1.2.1. Clustering Methods; 1.3. Fuzzy Sets and Fuzzy Logic; 1.3.1. Fuzzy Inference Systems and Fuzzy Control; 1.3.2. Type-2 Fuzzy Logic; 1.3.2.1. Interval Type-2 Fuzzy Sets; 1.3.2.2. Model Reduction; 1.3.2.3. Type-2 Fuzzy Clustering; 1.4. Neural Networks and Their Learning Methods; 1.4.1. Artificial Neural Networks; 1.4.2. Neural Networks' Learning</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.4.3. Recurrent Neural Networks1.5. Neuro-fuzzy Systems; Chapter 2 Adaptive Methods of Fuzzy Clustering; 2.1. An Objective Function for Fuzzy Clustering; 2.2. Optimization of the Objective Function; 2.3. A Linear Variable Fuzzifier; 2.3.1. Adaptive Fuzzy Clustering with a Variable Fuzzifier; 2.3.2. Possibilistic Fuzzy Clustering with a Variable Fuzzifier; 2.3.3. A Suppression Procedure for Fuzzy Clustering; 2.4. Methods Based on the Gustafson-Kessel Procedure; 2.4.1. The Basic Gustafson-Kessel Method; 2.4.2. A Possibilistic Version of the Gustafson-Kessel Method</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.4.3. Adaptive Versions of the Gustafson-Kessel Algorithm2.5. A Robust Fuzzy Clustering Method Based on the Cauchy Criterion; 2.5.1. The Probabilistic Approach; 2.5.2. The Possibilistic Approach; Chapter 3 Kohonen Maps and Their Ensembles for Fuzzy Clustering Tasks; 3.1. The Competitive Learning; 3.2. Kohonen Neural Networks; 3.3. Modifications of Kohonen Self-organizing Maps; 3.4. Ensembles and Their Learning Methods; 3.4.1. Reasons for Using Ensembles; 3.4.2. Basic Notions of the Theory of Collective Output Systems; 3.4.2.1. Confidence; 3.4.2.2. Diversification</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4.2.3. Incremental Ensembles' Learning3.4.3. Methods for Building Ensembles; 3.4.3.1. An Algebraic Combination; 3.4.3.2. A Weighted Combination; 3.4.3.3. Complex Systems of the Collective Output; 3.5. Ensembles of Neuro-fuzzy Kohonen Networks; 3.6. Fuzzy Type-2 Clustering Using Ensembles of Modified Neuro-fuzzy Kohonen Networks; Chapter 4 Simulation Results and Solutions for Practical Tasks; 4.1. Simulation of the Adaptive Neuro-fuzzy Kohonen Network with a Variable Fuzzifier; 4.1.1. Comparative Efficiency; 4.1.2. The Fuzzifier's Influence; 4.1.3. Influence of the Suppression Parameter</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2. Simulation of Adaptive Versions the Gustafson-Kessel Algorithm4.3. Simulation of the Robust Clustering Method Based on the Cauchy Criterion; 4.4. Solving the Task of Automated Cataloging of Illustrative Materials; Conclusion; References</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">In this guide designed for researchers and students of computer science, readers will find a resource for how to apply methods that work on real-life problems to their challenging applications, and a go-to work that makes fuzzy clustering issues and aspects clear</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Business / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Fuzzy systems</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">BUSINESS & ECONOMICS / Industrial Management</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">BUSINESS & ECONOMICS / Management</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">BUSINESS & ECONOMICS / Management Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">BUSINESS & ECONOMICS / Organizational Behavior</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Business / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Fuzzy systems</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bodyanskiy, Yevgeniy V.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tyshchenko, Oleksii</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-83867-174-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.emerald.com/insight/publication/doi/10.1108/9781838671716</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-55-BME</subfield><subfield code="a">ZDB-1-EPB</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-55-BME19</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031492417</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1108/9781838671716</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-55-BME</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1108/9781838671716</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-55-BME</subfield><subfield code="q">ZDB-55-BME19</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1108/9781838671716</subfield><subfield code="l">DE-824</subfield><subfield code="p">ZDB-55-BME</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.emerald.com/insight/publication/doi/10.1108/9781838671716</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-1-EPB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.emerald.com/insight/publication/doi/10.1108/9781838671716</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-1-EPB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.emerald.com/insight/publication/doi/10.1108/9781838671716</subfield><subfield code="l">DE-M347</subfield><subfield code="p">ZDB-1-EPB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.emerald.com/insight/publication/doi/10.1108/9781838671716</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-55-BME</subfield><subfield code="q">ZDB-55-BME19</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.emerald.com/insight/publication/doi/10.1108/9781838671716</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-55-BME</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.emerald.com/insight/publication/doi/10.1108/9781838671716</subfield><subfield code="l">DE-523</subfield><subfield code="p">ZDB-1-EPB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.emerald.com/insight/publication/doi/10.1108/9781838671716</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-1-EPB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.emerald.com/insight/publication/doi/10.1108/9781838671716</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-1-EPB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.emerald.com/insight/publication/doi/10.1108/9781838671716</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-1-EPB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.emerald.com/insight/publication/doi/10.1108/9781838671716</subfield><subfield code="l">DE-355</subfield><subfield code="p">ZDB-1-EPB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.emerald.com/insight/publication/doi/10.1108/9781838671716</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-1-EPB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.emerald.com/insight/publication/doi/10.1108/9781838671716</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-1-EPB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.emerald.com/insight/publication/doi/10.1108/9781838671716</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-1-EPB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.emerald.com/insight/publication/doi/10.1108/9781838671716</subfield><subfield code="l">DE-824</subfield><subfield code="p">ZDB-1-EPB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.emerald.com/insight/publication/doi/10.1108/9781838671716</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-1-EPB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.emerald.com/insight/publication/doi/10.1108/9781838671716</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-55-BME</subfield><subfield code="q">UER_Paketkauf_2019</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.emerald.com/insight/publication/doi/10.1108/9781838671716</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-1-EPB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046111829 |
illustrated | Not Illustrated |
indexdate | 2024-08-05T08:44:51Z |
institution | BVB |
isbn | 9781838671716 1838671714 9781838671730 1838671730 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031492417 |
oclc_num | 1119106405 |
open_access_boolean | |
owner | DE-634 DE-1043 DE-M347 DE-92 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-523 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-20 DE-706 DE-824 DE-29 DE-739 |
owner_facet | DE-634 DE-1043 DE-M347 DE-92 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-523 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-20 DE-706 DE-824 DE-29 DE-739 |
physical | 1 Online-Ressource (vii, 111 Seiten) |
psigel | ZDB-55-BME ZDB-1-EPB ZDB-55-BME19 ZDB-55-BME ZDB-55-BME19 ZDB-55-BME UER_Paketkauf_2019 |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Emerald Publishing |
record_format | marc |
series2 | Emerald points |
spellingShingle | Hu, Zhengbing Self-learning and adaptive algorithms for business applications a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions Contents: Chapter 1 Review of the Problem Area; 1.1. Learning and Self-learning Procedures; 1.2. Clustering; 1.2.1. Clustering Methods; 1.3. Fuzzy Sets and Fuzzy Logic; 1.3.1. Fuzzy Inference Systems and Fuzzy Control; 1.3.2. Type-2 Fuzzy Logic; 1.3.2.1. Interval Type-2 Fuzzy Sets; 1.3.2.2. Model Reduction; 1.3.2.3. Type-2 Fuzzy Clustering; 1.4. Neural Networks and Their Learning Methods; 1.4.1. Artificial Neural Networks; 1.4.2. Neural Networks' Learning 1.4.3. Recurrent Neural Networks1.5. Neuro-fuzzy Systems; Chapter 2 Adaptive Methods of Fuzzy Clustering; 2.1. An Objective Function for Fuzzy Clustering; 2.2. Optimization of the Objective Function; 2.3. A Linear Variable Fuzzifier; 2.3.1. Adaptive Fuzzy Clustering with a Variable Fuzzifier; 2.3.2. Possibilistic Fuzzy Clustering with a Variable Fuzzifier; 2.3.3. A Suppression Procedure for Fuzzy Clustering; 2.4. Methods Based on the Gustafson-Kessel Procedure; 2.4.1. The Basic Gustafson-Kessel Method; 2.4.2. A Possibilistic Version of the Gustafson-Kessel Method 2.4.3. Adaptive Versions of the Gustafson-Kessel Algorithm2.5. A Robust Fuzzy Clustering Method Based on the Cauchy Criterion; 2.5.1. The Probabilistic Approach; 2.5.2. The Possibilistic Approach; Chapter 3 Kohonen Maps and Their Ensembles for Fuzzy Clustering Tasks; 3.1. The Competitive Learning; 3.2. Kohonen Neural Networks; 3.3. Modifications of Kohonen Self-organizing Maps; 3.4. Ensembles and Their Learning Methods; 3.4.1. Reasons for Using Ensembles; 3.4.2. Basic Notions of the Theory of Collective Output Systems; 3.4.2.1. Confidence; 3.4.2.2. Diversification 3.4.2.3. Incremental Ensembles' Learning3.4.3. Methods for Building Ensembles; 3.4.3.1. An Algebraic Combination; 3.4.3.2. A Weighted Combination; 3.4.3.3. Complex Systems of the Collective Output; 3.5. Ensembles of Neuro-fuzzy Kohonen Networks; 3.6. Fuzzy Type-2 Clustering Using Ensembles of Modified Neuro-fuzzy Kohonen Networks; Chapter 4 Simulation Results and Solutions for Practical Tasks; 4.1. Simulation of the Adaptive Neuro-fuzzy Kohonen Network with a Variable Fuzzifier; 4.1.1. Comparative Efficiency; 4.1.2. The Fuzzifier's Influence; 4.1.3. Influence of the Suppression Parameter 4.2. Simulation of Adaptive Versions the Gustafson-Kessel Algorithm4.3. Simulation of the Robust Clustering Method Based on the Cauchy Criterion; 4.4. Solving the Task of Automated Cataloging of Illustrative Materials; Conclusion; References |
title | Self-learning and adaptive algorithms for business applications a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions |
title_auth | Self-learning and adaptive algorithms for business applications a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions |
title_exact_search | Self-learning and adaptive algorithms for business applications a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions |
title_full | Self-learning and adaptive algorithms for business applications a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions by Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii K. Tyshchenko |
title_fullStr | Self-learning and adaptive algorithms for business applications a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions by Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii K. Tyshchenko |
title_full_unstemmed | Self-learning and adaptive algorithms for business applications a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions by Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii K. Tyshchenko |
title_short | Self-learning and adaptive algorithms for business applications |
title_sort | self learning and adaptive algorithms for business applications a guide to adaptive neuro fuzzy systems for fuzzy clustering under uncertainty conditions |
title_sub | a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions |
url | https://www.emerald.com/insight/publication/doi/10.1108/9781838671716 |
work_keys_str_mv | AT huzhengbing selflearningandadaptivealgorithmsforbusinessapplicationsaguidetoadaptiveneurofuzzysystemsforfuzzyclusteringunderuncertaintyconditions AT bodyanskiyyevgeniyv selflearningandadaptivealgorithmsforbusinessapplicationsaguidetoadaptiveneurofuzzysystemsforfuzzyclusteringunderuncertaintyconditions AT tyshchenkooleksii selflearningandadaptivealgorithmsforbusinessapplicationsaguidetoadaptiveneurofuzzysystemsforfuzzyclusteringunderuncertaintyconditions |