Fourier analysis of economic phenomena:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore
Springer
[2018]
|
Schriftenreihe: | Monographs in mathematical economics
Volume 2 |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | xi, 410 Seiten Illustrationen 23.5 cm x 15.5 cm |
ISBN: | 9789811327292 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV046079805 | ||
003 | DE-604 | ||
005 | 20211216 | ||
007 | t | ||
008 | 190731s2018 si a||| |||| 00||| eng d | ||
015 | |a 18,N38 |2 dnb | ||
016 | 7 | |a 1166679527 |2 DE-101 | |
020 | |a 9789811327292 |9 978-981-13-2729-2 | ||
035 | |a (OCoLC)1113642792 | ||
035 | |a (DE-599)DNB1166679527 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a si |c SG | ||
049 | |a DE-355 |a DE-11 |a DE-188 | ||
084 | |a QC 330 |0 (DE-625)141269: |2 rvk | ||
084 | |a SK 450 |0 (DE-625)143240: |2 rvk | ||
100 | 1 | |a Maruyama, Tōru |e Verfasser |0 (DE-588)114496838 |4 aut | |
245 | 1 | 0 | |a Fourier analysis of economic phenomena |c Toru Maruyama |
264 | 1 | |a Singapore |b Springer |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a xi, 410 Seiten |b Illustrationen |c 23.5 cm x 15.5 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Monographs in mathematical economics |v Volume 2 | |
650 | 0 | 7 | |a Dynamisches Modell |0 (DE-588)4150932-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konjunkturzyklus |0 (DE-588)4032134-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wirtschaftstheorie |0 (DE-588)4079351-5 |2 gnd |9 rswk-swf |
653 | |a Bochner Theorem | ||
653 | |a Fourier analysis | ||
653 | |a Kaldor-Kalecki theory | ||
653 | |a Slutsky effect | ||
653 | |a business cycle | ||
689 | 0 | 0 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | 1 | |a Wirtschaftstheorie |0 (DE-588)4079351-5 |D s |
689 | 0 | 2 | |a Dynamisches Modell |0 (DE-588)4150932-8 |D s |
689 | 0 | 3 | |a Konjunkturzyklus |0 (DE-588)4032134-4 |D s |
689 | 0 | |C b |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-981-13-2730-8 |
830 | 0 | |a Monographs in mathematical economics |v Volume 2 |w (DE-604)BV042917126 |9 2 | |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=0419cedd2a9640d3a17440f670c85133&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031460927&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-031460927 |
Datensatz im Suchindex
_version_ | 1804180368155213824 |
---|---|
adam_text | Contents 1 Fourier Series on Hilbert Spaces..................................................................... 1.1 Hilbert Spaces........................................................................................... 1.2 Orthonormal Systems............................................................................... 1.3 Fourier Series............................................................................................ 1.4 Completeness of Orthonormal Systems............................................. References................................................................................................................. 1 1 5 11 14 21 2 Convergence of Classical Fourier Series...................................................... 2.1 Dirichlet Integrals...................................................................................... 2.2 Dini, Jordan Tests.................................................................................... 2.3 Almost Everywhere Convergence: Historical Survey.................... 2.4 Uniform Convergence............................................................................ 2.5 Fejér Integral and (C, l)-summability............................................... References................................................................................................................. 23 24 28 34 37 40 44 3 Fourier Transforms (I)........................................................................................ 3.1 Fourier
Integrals........................................................................................ 3.2 Fourier Transforms on İÎ1 (R, C)......................................................... 47 47 52 3.3 Application: Heat Equation................................................................... References................................................................................................................. 60 62 Fourier Transforms (II)...................................................................................... 4.1 Fourier Transforms of Rapidly Decreasing Functions................... 4.2 Fourier Transforms on Ü2(R, C) ......................................................... 65 65 72 4.3 4.4 4.5 Application: Integral Equations of Convolution Type.................... Fourier Transforms of Tempered Distributions................................ Fourier Transforms on ii2(R, C) Revisited....................................... 75 78 87 4.6 Periodic Distributions............................................................................. References................................................................................................................. 92 99 Summability Kernels and SpectralSynthesis ............................................. 5.1 Shift Operators......................................................................................... 5.2 Summability Kernels on [—π, π]........................................................ 101 101 105 4 5 ix
Contents 5.3 Spectral Synthesis on [—π, π] ....................................................... 109 5.4 Summability Kernels on R............................................................. Ill 5.5 Spectral Synthesis on R: Inverse Fourier Transforms on fi1........ 115 References..................................................................................................... 119 Fourier Transforms of Measures.............................................................. 6.1 Radon Measures ............................................................................. 6.2 Fourier Coefficients of Measures ( 1 ).............................................. 6.3 Fourier Coefficients of Measures (2).............................................. 6.4 Herglotz’s Theorem......................................................................... 6.5 Fourier Transforms of Measures................................................... 6.6 Bochner’s Theorem......................................................................... 6.7 Convolutions of Measures.............................................................. 6.8 Wiener’s Theorem.......................................................................... References..................................................................................................... 121 121 122 126 129 136 146 154 158 163 Spectral Representation of Unitary Operators...................................... 7.1 Lax-Milgram Theorem.................................................................. 7.2 Conjugate Operators and
Projections............................................ 7.3 Unitary Operators............................................................................ 7.4 Resolution of the Identity............................................................... 7.5 Spectral Representation of Unitary Operators.............................. 7.6 Stone’s Theorem............................................................................. References..................................................................................................... 165 165 169 175 177 180 187 191 Periodic Weakly Stationary Processes..................................................... 8.1 Stochastic Processes of Second Order.......................................... 8.2 Weakly Stationary Stochastic Processes....................................... 8.3 Periodicity of Weakly Stationary Stochastic Process .................. 8.4 Orthogonal Measures..................................................................... 8.5 Spectral Representation of Weakly Stationary Processes............ 8.6 Spectral Density Functions............................................................ 8.7 A Note on Slutsky’s Work 6437180 References..................................................................................................... 193 194 200 210 216 221 227 238 243 Almost Periodic Functions and Stochastic Processes........................... 9.1 Almost Periodic Functions............................................................ 9.2 Щ5 (R, €) as a Closed Subalgebra of P°°(R, C)........................... 9.3 Spectrum of
Almost Periodic Functions....................................... 9.4 Fourier Series of Almost Periodic Functions................................ 9.5 Almost Periodic Weakly Stationary Stochastic Processes........... References..................................................................................................... 245 245 247 256 266 274 277 Fredholm Operators .................................................................................. 10.1 Direct Sums and Projections.......................................................... 10.2 Fredholm Operators: Definitions and Examples........................... 10.3 Parametrix........................................................................................ 279 279 290 293
Contents xi 10.4 Product of Fredholm Operators..................................................... 295 10.5 Stability of Indices.......................................................................... 298 References..................................................................................................... 299 11 Hopf Bifurcation Theorem....................................................................... 11.1 Ljapunov-Schmidt Reduction Method......................................... 11.2 Abstract Hopf Bifurcation Theorem.............................................. 11.3 Classical Hopf Bifurcation for Ordinary Differential Equations . 11.4 Smoothness of F............................................................................. 11.5 dim® =2....................................................................................... 11.6 codim 31 = 2................................................................................... 11.7 Linear Independence of PMv* and PNv* (1)............................. 11.8 Linear Independence of PMv* and PNv* (2)............................. 11.9 Hopf Bifurcation in G7..................................................................... 11.10 Kaldorian Business Fluctuations................................................... 11.11 Ljapunov’s Center Theorem........................................................... References..................................................................................................... 301 303 305 309 312 315 317 321 322 328 330 335 344 Appendix A Exponential Function
еІѲ........................................................ A.l Complex Exponential Function...................................................... A.2 Imaginary Exponential Function.................................................... A.3 Torus Κ/2πΖ.................................................................................... A.4 A Homomorphism of R into U....................................................... A.5 Functions and σ -Fields on the Toms.............................................. References..................................................................................................... 347 347 349 352 354 355 356 Appendix В Topics from Functional Analysis............................................ B.l Inductive Limit Topology................................................................ B.2 Duals of Locally Convex Spaces.................................................... References..................................................................................................... 357 357 366 377 AppendixC Theory of Distributions........................................................... C.l The Space T ..................................................................................... C.2 Examples of Test Functions and an Approximation Theorem .... C.3 Distributions: Definition and Examples.......................................... C.4 Differentiation of Distributions ...................................................... C.5 Topologies on the Space £ (£?) of Distributions...........................
References..................................................................................................... 379 379 384 388 392 396 402 Addendum........................................................................................................... 403 References..................................................................................................... 404 Name Index.......................................................................................................... 405 Subject Index 407
|
any_adam_object | 1 |
author | Maruyama, Tōru |
author_GND | (DE-588)114496838 |
author_facet | Maruyama, Tōru |
author_role | aut |
author_sort | Maruyama, Tōru |
author_variant | t m tm |
building | Verbundindex |
bvnumber | BV046079805 |
classification_rvk | QC 330 SK 450 |
ctrlnum | (OCoLC)1113642792 (DE-599)DNB1166679527 |
discipline | Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02315nam a2200553 cb4500</leader><controlfield tag="001">BV046079805</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211216 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">190731s2018 si a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">18,N38</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1166679527</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811327292</subfield><subfield code="9">978-981-13-2729-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1113642792</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1166679527</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">si</subfield><subfield code="c">SG</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QC 330</subfield><subfield code="0">(DE-625)141269:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Maruyama, Tōru</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)114496838</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fourier analysis of economic phenomena</subfield><subfield code="c">Toru Maruyama</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Springer</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xi, 410 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">23.5 cm x 15.5 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Monographs in mathematical economics</subfield><subfield code="v">Volume 2</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches Modell</subfield><subfield code="0">(DE-588)4150932-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konjunkturzyklus</subfield><subfield code="0">(DE-588)4032134-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wirtschaftstheorie</subfield><subfield code="0">(DE-588)4079351-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bochner Theorem</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fourier analysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Kaldor-Kalecki theory</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Slutsky effect</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">business cycle</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wirtschaftstheorie</subfield><subfield code="0">(DE-588)4079351-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Dynamisches Modell</subfield><subfield code="0">(DE-588)4150932-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Konjunkturzyklus</subfield><subfield code="0">(DE-588)4032134-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-981-13-2730-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Monographs in mathematical economics</subfield><subfield code="v">Volume 2</subfield><subfield code="w">(DE-604)BV042917126</subfield><subfield code="9">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=0419cedd2a9640d3a17440f670c85133&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031460927&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031460927</subfield></datafield></record></collection> |
id | DE-604.BV046079805 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:34:38Z |
institution | BVB |
isbn | 9789811327292 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031460927 |
oclc_num | 1113642792 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-11 DE-188 |
owner_facet | DE-355 DE-BY-UBR DE-11 DE-188 |
physical | xi, 410 Seiten Illustrationen 23.5 cm x 15.5 cm |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Springer |
record_format | marc |
series | Monographs in mathematical economics |
series2 | Monographs in mathematical economics |
spelling | Maruyama, Tōru Verfasser (DE-588)114496838 aut Fourier analysis of economic phenomena Toru Maruyama Singapore Springer [2018] © 2018 xi, 410 Seiten Illustrationen 23.5 cm x 15.5 cm txt rdacontent n rdamedia nc rdacarrier Monographs in mathematical economics Volume 2 Dynamisches Modell (DE-588)4150932-8 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Konjunkturzyklus (DE-588)4032134-4 gnd rswk-swf Wirtschaftstheorie (DE-588)4079351-5 gnd rswk-swf Bochner Theorem Fourier analysis Kaldor-Kalecki theory Slutsky effect business cycle Harmonische Analyse (DE-588)4023453-8 s Wirtschaftstheorie (DE-588)4079351-5 s Dynamisches Modell (DE-588)4150932-8 s Konjunkturzyklus (DE-588)4032134-4 s b DE-604 Erscheint auch als Online-Ausgabe 978-981-13-2730-8 Monographs in mathematical economics Volume 2 (DE-604)BV042917126 2 X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=0419cedd2a9640d3a17440f670c85133&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031460927&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Maruyama, Tōru Fourier analysis of economic phenomena Monographs in mathematical economics Dynamisches Modell (DE-588)4150932-8 gnd Harmonische Analyse (DE-588)4023453-8 gnd Konjunkturzyklus (DE-588)4032134-4 gnd Wirtschaftstheorie (DE-588)4079351-5 gnd |
subject_GND | (DE-588)4150932-8 (DE-588)4023453-8 (DE-588)4032134-4 (DE-588)4079351-5 |
title | Fourier analysis of economic phenomena |
title_auth | Fourier analysis of economic phenomena |
title_exact_search | Fourier analysis of economic phenomena |
title_full | Fourier analysis of economic phenomena Toru Maruyama |
title_fullStr | Fourier analysis of economic phenomena Toru Maruyama |
title_full_unstemmed | Fourier analysis of economic phenomena Toru Maruyama |
title_short | Fourier analysis of economic phenomena |
title_sort | fourier analysis of economic phenomena |
topic | Dynamisches Modell (DE-588)4150932-8 gnd Harmonische Analyse (DE-588)4023453-8 gnd Konjunkturzyklus (DE-588)4032134-4 gnd Wirtschaftstheorie (DE-588)4079351-5 gnd |
topic_facet | Dynamisches Modell Harmonische Analyse Konjunkturzyklus Wirtschaftstheorie |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=0419cedd2a9640d3a17440f670c85133&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031460927&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV042917126 |
work_keys_str_mv | AT maruyamatoru fourieranalysisofeconomicphenomena |