The Norm residue theorem in motivic cohomology:
This book presents the complete proof of the Bloch-Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these conjectures describe the structure of étale cohomology and its relation to motivic cohomology and Cho...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Princeton and Oxford
Princeton University Press
2019
|
Schriftenreihe: | Annals of mathematics studies
200 |
Schlagworte: | |
Zusammenfassung: | This book presents the complete proof of the Bloch-Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these conjectures describe the structure of étale cohomology and its relation to motivic cohomology and Chow groups.Although the proof relies on the work of several people, it is credited primarily to Vladimir Voevodsky. The authors draw on a multitude of published and unpublished sources to explain the large-scale structure of Voevodsky’s proof and introduce the key figures behind its development. They go on to describe the highly innovative geometric constructions of Markus Rost, including the construction of norm varieties, which play a crucial role in the proof. The book then addresses symmetric powers of motives and motivic cohomology operations.Comprehensive and self-contained, The Norm Residue Theorem in Motivic Cohomology unites various components of the proof that until now were scattered across many sources of varying accessibility, often with differing hypotheses, definitions, and language |
Beschreibung: | xiii, 299 Seiten |
ISBN: | 9780691181820 9780691191041 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV046063859 | ||
003 | DE-604 | ||
005 | 20190814 | ||
007 | t | ||
008 | 190724s2019 b||| 00||| eng d | ||
020 | |a 9780691181820 |9 978-0-691-18182-0 | ||
020 | |a 9780691191041 |c pbk. |9 978-0-691-19104-1 | ||
035 | |a (OCoLC)1111898383 | ||
035 | |a (DE-599)BVBBV046063859 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-19 | ||
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
100 | 1 | |a Haesemeyer, Christian |e Verfasser |0 (DE-588)1189945118 |4 aut | |
245 | 1 | 0 | |a The Norm residue theorem in motivic cohomology |c Christian Haesemeyer, Charles A. Weibel |
264 | 1 | |a Princeton and Oxford |b Princeton University Press |c 2019 | |
300 | |a xiii, 299 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Annals of mathematics studies |v 200 | |
520 | 3 | |a This book presents the complete proof of the Bloch-Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these conjectures describe the structure of étale cohomology and its relation to motivic cohomology and Chow groups.Although the proof relies on the work of several people, it is credited primarily to Vladimir Voevodsky. The authors draw on a multitude of published and unpublished sources to explain the large-scale structure of Voevodsky’s proof and introduce the key figures behind its development. They go on to describe the highly innovative geometric constructions of Markus Rost, including the construction of norm varieties, which play a crucial role in the proof. The book then addresses symmetric powers of motives and motivic cohomology operations.Comprehensive and self-contained, The Norm Residue Theorem in Motivic Cohomology unites various components of the proof that until now were scattered across many sources of varying accessibility, often with differing hypotheses, definitions, and language | |
650 | 0 | 7 | |a Chow-Gruppe |0 (DE-588)4147916-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kohomologie |0 (DE-588)4031700-6 |2 gnd |9 rswk-swf |
653 | 0 | |a Homology theory | |
653 | 0 | |a MATHEMATICS / Topology | |
653 | 0 | |a Homology theory | |
653 | 6 | |a Electronic books | |
653 | 6 | |a Electronic books | |
689 | 0 | 0 | |a Kohomologie |0 (DE-588)4031700-6 |D s |
689 | 0 | 1 | |a Chow-Gruppe |0 (DE-588)4147916-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Weibel, Charles A. |d 1950- |e Sonstige |0 (DE-588)142971200 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-0-691-18963-5 |
830 | 0 | |a Annals of mathematics studies |v 200 |w (DE-604)BV000000991 |9 200 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-031445152 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804180342905503744 |
---|---|
any_adam_object | |
author | Haesemeyer, Christian |
author_GND | (DE-588)1189945118 (DE-588)142971200 |
author_facet | Haesemeyer, Christian |
author_role | aut |
author_sort | Haesemeyer, Christian |
author_variant | c h ch |
building | Verbundindex |
bvnumber | BV046063859 |
classification_rvk | SI 830 |
ctrlnum | (OCoLC)1111898383 (DE-599)BVBBV046063859 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02807nam a2200469 cb4500</leader><controlfield tag="001">BV046063859</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190814 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">190724s2019 b||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691181820</subfield><subfield code="9">978-0-691-18182-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691191041</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-0-691-19104-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1111898383</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046063859</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haesemeyer, Christian</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1189945118</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Norm residue theorem in motivic cohomology</subfield><subfield code="c">Christian Haesemeyer, Charles A. Weibel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton and Oxford</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 299 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">200</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book presents the complete proof of the Bloch-Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these conjectures describe the structure of étale cohomology and its relation to motivic cohomology and Chow groups.Although the proof relies on the work of several people, it is credited primarily to Vladimir Voevodsky. The authors draw on a multitude of published and unpublished sources to explain the large-scale structure of Voevodsky’s proof and introduce the key figures behind its development. They go on to describe the highly innovative geometric constructions of Markus Rost, including the construction of norm varieties, which play a crucial role in the proof. The book then addresses symmetric powers of motives and motivic cohomology operations.Comprehensive and self-contained, The Norm Residue Theorem in Motivic Cohomology unites various components of the proof that until now were scattered across many sources of varying accessibility, often with differing hypotheses, definitions, and language</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chow-Gruppe</subfield><subfield code="0">(DE-588)4147916-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohomologie</subfield><subfield code="0">(DE-588)4031700-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Homology theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">MATHEMATICS / Topology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Homology theory</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kohomologie</subfield><subfield code="0">(DE-588)4031700-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Chow-Gruppe</subfield><subfield code="0">(DE-588)4147916-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weibel, Charles A.</subfield><subfield code="d">1950-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)142971200</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-691-18963-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">200</subfield><subfield code="w">(DE-604)BV000000991</subfield><subfield code="9">200</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031445152</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV046063859 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:34:15Z |
institution | BVB |
isbn | 9780691181820 9780691191041 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031445152 |
oclc_num | 1111898383 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-19 DE-BY-UBM |
owner_facet | DE-355 DE-BY-UBR DE-19 DE-BY-UBM |
physical | xiii, 299 Seiten |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of mathematics studies |
series2 | Annals of mathematics studies |
spelling | Haesemeyer, Christian Verfasser (DE-588)1189945118 aut The Norm residue theorem in motivic cohomology Christian Haesemeyer, Charles A. Weibel Princeton and Oxford Princeton University Press 2019 xiii, 299 Seiten txt rdacontent n rdamedia nc rdacarrier Annals of mathematics studies 200 This book presents the complete proof of the Bloch-Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these conjectures describe the structure of étale cohomology and its relation to motivic cohomology and Chow groups.Although the proof relies on the work of several people, it is credited primarily to Vladimir Voevodsky. The authors draw on a multitude of published and unpublished sources to explain the large-scale structure of Voevodsky’s proof and introduce the key figures behind its development. They go on to describe the highly innovative geometric constructions of Markus Rost, including the construction of norm varieties, which play a crucial role in the proof. The book then addresses symmetric powers of motives and motivic cohomology operations.Comprehensive and self-contained, The Norm Residue Theorem in Motivic Cohomology unites various components of the proof that until now were scattered across many sources of varying accessibility, often with differing hypotheses, definitions, and language Chow-Gruppe (DE-588)4147916-6 gnd rswk-swf Kohomologie (DE-588)4031700-6 gnd rswk-swf Homology theory MATHEMATICS / Topology Electronic books Kohomologie (DE-588)4031700-6 s Chow-Gruppe (DE-588)4147916-6 s 1\p DE-604 Weibel, Charles A. 1950- Sonstige (DE-588)142971200 oth Erscheint auch als Online-Ausgabe 978-0-691-18963-5 Annals of mathematics studies 200 (DE-604)BV000000991 200 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Haesemeyer, Christian The Norm residue theorem in motivic cohomology Annals of mathematics studies Chow-Gruppe (DE-588)4147916-6 gnd Kohomologie (DE-588)4031700-6 gnd |
subject_GND | (DE-588)4147916-6 (DE-588)4031700-6 |
title | The Norm residue theorem in motivic cohomology |
title_auth | The Norm residue theorem in motivic cohomology |
title_exact_search | The Norm residue theorem in motivic cohomology |
title_full | The Norm residue theorem in motivic cohomology Christian Haesemeyer, Charles A. Weibel |
title_fullStr | The Norm residue theorem in motivic cohomology Christian Haesemeyer, Charles A. Weibel |
title_full_unstemmed | The Norm residue theorem in motivic cohomology Christian Haesemeyer, Charles A. Weibel |
title_short | The Norm residue theorem in motivic cohomology |
title_sort | the norm residue theorem in motivic cohomology |
topic | Chow-Gruppe (DE-588)4147916-6 gnd Kohomologie (DE-588)4031700-6 gnd |
topic_facet | Chow-Gruppe Kohomologie |
volume_link | (DE-604)BV000000991 |
work_keys_str_mv | AT haesemeyerchristian thenormresiduetheoreminmotiviccohomology AT weibelcharlesa thenormresiduetheoreminmotiviccohomology |