LiDAR technologies and systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Bellingham, Washington, USA
SPIE Press
[2019]
|
Schlagworte: | |
Beschreibung: | Preface; 1 Introduction to LiDAR; 1.1 Context of LiDAR; 1.2 Conceptual Discussion of LiDAR; 1.3 Terms for Active EO Sensing; 1.4 Types of LiDARs; 1.4.1 Some LiDARs for surface-scattering (hard) targets; 1.4.2 Some LiDARS for volume-scattering (soft) targets; 1.5 LiDAR Detection Modes; 1.6 Flash LiDAR versus Scanning LiDAR; 1.7 Eye Safety Considerations; 1.8 Laser Safety Categories; 1.9 Monostatic versus Bistatic LiDAR; 1.10 Transmit/Receive Isolation; 1.11 Major Devices in a LiDAR; 1.11.1 Laser sources; 1.11.2 Receivers; 1.11.3 Apertures; 1.12 Organization of this Book; Problems and Solutions; References; 2 History of LiDAR; 2.1 Rangefinders, Altimeters, - and Designators; 2.1.1 First steps of rangerfinders; 2.1.2 Long-distance rangefinders; 2.1.3 Laser altimeters; 2.1.4 Laser designators; 2.1.5 Obstacle avoidance applications; 2.2 Early Coherent LiDARs; 2.2.1 Early work at MIT Lincoln Lab; 2.2.2 Early coherent LiDAR airborne applications; 2.2.3 Autonomous navigation using coherent LiDAR; 2.2.4 Atmospheric wind sensing; 2.2.5 Laser vibrometry; 2.2.6 Synthetic-aperture LiDAR; 2.3 Early Space-based LiDAR; 2.4 Flight-based Laser Vibrometers; 2.5 Environmental LiDARs; 2.5.1 Early steps; 2.5.2 Multiwavelength LiDARs; 2.5.3 LiDAR sensing in China; 2.5.4 LiDAR sensing in Japan; 2.6 Imaging LiDARs; 2.6.1 Early LiDAR imaging; 2.6.2 Imaging LiDARs for manufacturing; 2.6.3 Range-gated imaging programs; 2.6.4 3D LiDAR; 2.6.5 Imaging for weapon guidance; 2.6.6 Flash-imaging LiDAR; 2.6.7 Mapping LiDAR; 2.6.8 LiDARs - for underwater: laser-based bathymetry; 2.6.9 Laser micro-radar; 2.7 History Conclusion; References; 3 LiDAR Range Equation; 3.1 Introduction to the LiDAR Range Equation; 3.2 Illuminator Beam; 3.3 LiDAR Cross-Section; 3.3.1 Cross-section of a corner cube; 3.4 Link Budget Range Equation; 3.5 Atmospheric Effects; 3.5.1 Atmospheric scattering; 3.5.2 Atmospheric turbulence; 3.5.3 Aero-optical effects on LiDAR; 3.5.4 Extended (deep) turbulence; 3.5.5 Speckle; Problems and Solutions; References; 4 Types of LiDAR; 4.1 Direct-Detection LiDAR; 4.1.1 1D range-only LiDAR; 4.1.2 Tomographic imaging LiDAR; 4.1.3 Range-gated active imaging (2D LiDAR); 4.1.4 3D scanning LiDAR; 4.1.5 Flash imaging; 4.1.6 3D mapping applications; 4.1.7 Laser-induced breakdown spectroscopy; 4.1.8 Laser-induced fluorescence; 4.1.9 Active multispectral LiDAR; 4.1.10 LiDARs using polarization as a discriminant; 4.2 - Coherent LiDAR; 4.2.1 Laser vibration detection; 4.2.2 Range-Doppler imaging LiDAR; 4.2.3 Speckle imaging LiDAR; 4.2.4 Aperture-synthesis-based LiDAR; 4.3 Multiple-Input, - Multiple-Output Active EO Sensing; Appendix: MATLAB (R) program showing synthetic-aperture pupil planes and MTFs; Problems and Solutions; References; 5 LiDAR Sources and Modulations; 5.1 Laser Background Discussion; 5.2 Laser Waveforms for LiDAR; 5.2.1 Introduction; 5.2.2 High time-bandwidth product waveforms; 5.2.3 Radiofrequency modulation of a direct-detection LiDAR; 5.2.4 Femtosecond-pulse-modulation LiDAR; 5.2.5 Laser resonators; 5.2.6 Three-level and four-level lasers; 5.2.7 Laser-pumping considerations; 5.2.8 Q-switched lasers for LiDAR; 5.2.9 Mode-locked lasers for LiDAR; 5.2.10 Laser seeding for LiDAR; 5.2.11 Laser amplifier for LiDAR; 5.3 Lasers Used in LiDAR; 5.3.1 Diode lasers for LiDAR; 5.4 Bulk Solid State Lasers for LiDAR; 5.4.1 Fiber lasers for LiDAR; 5.4.2 Nonlinear devices to change LiDAR wavelength; 5.5 Fiber Format; Problems and Solutions; References; 6 LiDAR Receivers; 6.1 - Introduction to LiDAR Receivers; 6.2 LiDAR Signal-to-Noise Ratio; 6.2.1 Noise probability density functions; 6.2.2 Thermal noise; 6.2.3 Shot noise; 6.2.4 Background noise; 6.2.5 Dark current, 1/f noise, - and excess noise; 6.3 Avalanche Photodiodes and Direct Detection; 6.3.1 Linear-mode APD arrays for LiDAR; 6.3.2 Direct-detection GMAPD LiDAR camera; 6.4 Silicon Detectors; 6.5 Heterodyne Detection; 6.5.1 Temporal heterodyne detection; 6.5.2 Heterodyne mixing efficiency; 6.5.3 Quadrature detection; 6.5.4 Carrier-to-noise ratio (CNR) for temporal heterodyne detection; 6.5.5 Spatial heterodyne detection / digital holography; 6.5.6 Receivers for coherent LiDARs; 6.5.7 Geiger-mode APDs for coherent imaging; 6.5.8 PIN diode or LMAPDs for coherent imaging; 6.5.9 Sampling associated with temporal heterodyne sensing; 6.6 Long-Frame-Time Framing Detectors for LiDAR; 6.7 Ghost LiDARs; 6.8 LiDAR Image Stabilization; 6.9 Optical-Time-of-Flight Flash LiDAR; 6.9.1 Summary of advantages and disadvantages of OTOF cameras; Problems and Solutions; References; 7 LiDAR Beam Steering and Optics; 7.1 Mechanical Beam-Steering Approaches - for LiDAR; 7.1.1 Gimbals; 7.1.2 Fast-steering mirrors; 7.1.3 Risley prisms and Risley gratings; 7.1.4 Rotating polygonal mirrors; 7.1.5 MEMS beam steering for LiDAR; 7.1.6 Lenslet-based beam steering; 7.2 Nonmechanical Beam-Steering Approaches for Steering LiDAR Optical Beams; 7.2.1 OPD-based nonmechanical approaches; 7.2.2 Chip-scale optical phased arrays; 7.2.3 Electrowetting beam steering for LiDAR; 7.2.4 Using electronically written lenslets for lenslet-based beam steering; 7.2.5 Beam steering using EO effects; 7.2.6 Phase-based nonmechanical beam steering; 7.3 Some Optical Design Considerations for LiDAR; 7.3.1 Geometrical optics; 7.3.2 Adaptive optics systems; 7.3.3 Adaptive optics elements; Problems and Solutions; Notes and References; 8 LiDAR Processing; 8.1 Introduction; 8.2 Generating LiDAR Images/Information; 8.2.1 Range measurement processing; 8.2.2 Range resolution of - LiDAR; 8.2.3 Angle LiDAR processing; 8.2.4 Gathering information from a temporally coherent LiDAR; 8.2.5 General LiDAR processing; 8.2.6 Target classification using LiDAR; Problems and Solutions; References; 9 Figures of Merit, Testing, - and Calibration for LiDAR; 9.1 Introduction; 9.2 LiDAR Characterization and Figures of Merit; 9.2.1 Ideal point response main lobe width; 9.2.2 Integrated sidelobe ratio; 9.2.3 Peak sidelobe ratio; 9.2.4 Spurious sidelobe ratio; 9.2.5 Noise-equivalent vibration velocity; 9.2.6 Ambiguity velocity; 9.2.7 Unambiguous range; 9.3 LiDAR Testing; 9.3.1 Angle/angle/range resolution testing; 9.3.2 Velocity measurement; 9.3.3 Measuring range walk; 9.4 LiDAR Calibration; 9.4.1 Dark nonuniform correction; 9.4.2 Results of correction; Problems and Solutions; References; 10 LiDAR Performance Metrics; 10.1 Image Quality Metrics; 10.1.1 Object parameters; 10.2 LiDAR Parameters; 10.3 Image Parameters: National Imagery Interpretability Rating Scale (NIIRS); 10.4 3D Metrics for LiDAR Images; 10.5 General Image Quality Equations; 10.6 Quality Metrics Associated with Automatic Target Detection, Recognition, - or Identification; 10.7 Information Theory Related to Image Quality Metrics; 10.8 Image Quality Metrics Based on Alternative Basis Sets; 10.9 Eigenmodes; 10.10 Compressive Sensing; 10.10.1 Knowledge-enhanced compressive sensing; 10.10.2 Scale-invariant feature transform; 10.11 Machine Learning; 10.12 Processing to Obtain Imagery; 10.13 Range Resolutions in EO/IR Imagers; 10.14 Current LiDAR Metric Standards; 10.15 Conclusions; Appendix: MATLAB code to Fourier transform an image; Problems and Solutions; Notes and References; 11 Significant Applications of LiDAR; 11.1 Auto LiDAR; 11.1.1 Introduction; 11.1.2 Resolution; 11.1.3 Frame rate; 11.1.4 Laser options; 11.1.5 Eye safety; 11.1.6 Unambiguous range; 11.1.7 Required laser energy per pulse and repetition rate; 11.1.8 Obscurants considered for auto LiDAR; 11.1.9 Keeping the auto-LiDAR aperture clear; 11.2 3D Mapping LiDAR; 11.2.1 Introduction to 3D mapping LiDAR; - 11.2.2 3D mapping LiDAR design; 11.3 Laser Vibrometers; 11.3.1 Designing a laser vibrometer; 11.4 Wind Sensing; Problems and Solutions; References; Index |
Beschreibung: | xiv, 504 Seiten Illustrationen, Diagramme |
ISBN: | 9781510625396 1510625399 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046061596 | ||
003 | DE-604 | ||
005 | 20240110 | ||
007 | t | ||
008 | 190723s2019 a||| |||| 00||| eng d | ||
020 | |a 9781510625396 |9 978-1-5106-2539-6 | ||
020 | |a 1510625399 |9 1-5106-2539-9 | ||
024 | 3 | |a 9781510625396 | |
035 | |a (OCoLC)1120139411 | ||
035 | |a (DE-599)BVBBV046061596 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-573 |a DE-91 |a DE-1102 | ||
084 | |a UH 7600 |0 (DE-625)145777: |2 rvk | ||
084 | |a ZQ 3910 |0 (DE-625)158088: |2 rvk | ||
084 | |a GEO 613 |2 stub | ||
084 | |a MSR 420 |2 stub | ||
100 | 1 | |a McManamon, Paul F. |d 1946- |e Verfasser |0 (DE-588)1221541439 |4 aut | |
245 | 1 | 0 | |a LiDAR technologies and systems |c Paul McManamon |
264 | 1 | |a Bellingham, Washington, USA |b SPIE Press |c [2019] | |
300 | |a xiv, 504 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Preface; 1 Introduction to LiDAR; 1.1 Context of LiDAR; 1.2 Conceptual Discussion of LiDAR; 1.3 Terms for Active EO Sensing; 1.4 Types of LiDARs; 1.4.1 Some LiDARs for surface-scattering (hard) targets; 1.4.2 Some LiDARS for volume-scattering (soft) targets; 1.5 LiDAR Detection Modes; 1.6 Flash LiDAR versus Scanning LiDAR; 1.7 Eye Safety Considerations; 1.8 Laser Safety Categories; 1.9 Monostatic versus Bistatic LiDAR; 1.10 Transmit/Receive Isolation; 1.11 Major Devices in a LiDAR; 1.11.1 Laser sources; 1.11.2 Receivers; 1.11.3 Apertures; 1.12 Organization of this Book; Problems and Solutions; References; 2 History of LiDAR; 2.1 Rangefinders, Altimeters, | ||
500 | |a - and Designators; 2.1.1 First steps of rangerfinders; 2.1.2 Long-distance rangefinders; 2.1.3 Laser altimeters; 2.1.4 Laser designators; 2.1.5 Obstacle avoidance applications; 2.2 Early Coherent LiDARs; 2.2.1 Early work at MIT Lincoln Lab; 2.2.2 Early coherent LiDAR airborne applications; 2.2.3 Autonomous navigation using coherent LiDAR; 2.2.4 Atmospheric wind sensing; 2.2.5 Laser vibrometry; 2.2.6 Synthetic-aperture LiDAR; 2.3 Early Space-based LiDAR; 2.4 Flight-based Laser Vibrometers; 2.5 Environmental LiDARs; 2.5.1 Early steps; 2.5.2 Multiwavelength LiDARs; 2.5.3 LiDAR sensing in China; 2.5.4 LiDAR sensing in Japan; 2.6 Imaging LiDARs; 2.6.1 Early LiDAR imaging; 2.6.2 Imaging LiDARs for manufacturing; 2.6.3 Range-gated imaging programs; 2.6.4 3D LiDAR; 2.6.5 Imaging for weapon guidance; 2.6.6 Flash-imaging LiDAR; 2.6.7 Mapping LiDAR; 2.6.8 LiDARs | ||
500 | |a - for underwater: laser-based bathymetry; 2.6.9 Laser micro-radar; 2.7 History Conclusion; References; 3 LiDAR Range Equation; 3.1 Introduction to the LiDAR Range Equation; 3.2 Illuminator Beam; 3.3 LiDAR Cross-Section; 3.3.1 Cross-section of a corner cube; 3.4 Link Budget Range Equation; 3.5 Atmospheric Effects; 3.5.1 Atmospheric scattering; 3.5.2 Atmospheric turbulence; 3.5.3 Aero-optical effects on LiDAR; 3.5.4 Extended (deep) turbulence; 3.5.5 Speckle; Problems and Solutions; References; 4 Types of LiDAR; 4.1 Direct-Detection LiDAR; 4.1.1 1D range-only LiDAR; 4.1.2 Tomographic imaging LiDAR; 4.1.3 Range-gated active imaging (2D LiDAR); 4.1.4 3D scanning LiDAR; 4.1.5 Flash imaging; 4.1.6 3D mapping applications; 4.1.7 Laser-induced breakdown spectroscopy; 4.1.8 Laser-induced fluorescence; 4.1.9 Active multispectral LiDAR; 4.1.10 LiDARs using polarization as a discriminant; 4.2 | ||
500 | |a - Coherent LiDAR; 4.2.1 Laser vibration detection; 4.2.2 Range-Doppler imaging LiDAR; 4.2.3 Speckle imaging LiDAR; 4.2.4 Aperture-synthesis-based LiDAR; 4.3 Multiple-Input, | ||
500 | |a - Multiple-Output Active EO Sensing; Appendix: MATLAB (R) program showing synthetic-aperture pupil planes and MTFs; Problems and Solutions; References; 5 LiDAR Sources and Modulations; 5.1 Laser Background Discussion; 5.2 Laser Waveforms for LiDAR; 5.2.1 Introduction; 5.2.2 High time-bandwidth product waveforms; 5.2.3 Radiofrequency modulation of a direct-detection LiDAR; 5.2.4 Femtosecond-pulse-modulation LiDAR; 5.2.5 Laser resonators; 5.2.6 Three-level and four-level lasers; 5.2.7 Laser-pumping considerations; 5.2.8 Q-switched lasers for LiDAR; 5.2.9 Mode-locked lasers for LiDAR; 5.2.10 Laser seeding for LiDAR; 5.2.11 Laser amplifier for LiDAR; 5.3 Lasers Used in LiDAR; 5.3.1 Diode lasers for LiDAR; 5.4 Bulk Solid State Lasers for LiDAR; 5.4.1 Fiber lasers for LiDAR; 5.4.2 Nonlinear devices to change LiDAR wavelength; 5.5 Fiber Format; Problems and Solutions; References; 6 LiDAR Receivers; 6.1 | ||
500 | |a - Introduction to LiDAR Receivers; 6.2 LiDAR Signal-to-Noise Ratio; 6.2.1 Noise probability density functions; 6.2.2 Thermal noise; 6.2.3 Shot noise; 6.2.4 Background noise; 6.2.5 Dark current, 1/f noise, | ||
500 | |a - and excess noise; 6.3 Avalanche Photodiodes and Direct Detection; 6.3.1 Linear-mode APD arrays for LiDAR; 6.3.2 Direct-detection GMAPD LiDAR camera; 6.4 Silicon Detectors; 6.5 Heterodyne Detection; 6.5.1 Temporal heterodyne detection; 6.5.2 Heterodyne mixing efficiency; 6.5.3 Quadrature detection; 6.5.4 Carrier-to-noise ratio (CNR) for temporal heterodyne detection; 6.5.5 Spatial heterodyne detection / digital holography; 6.5.6 Receivers for coherent LiDARs; 6.5.7 Geiger-mode APDs for coherent imaging; 6.5.8 PIN diode or LMAPDs for coherent imaging; 6.5.9 Sampling associated with temporal heterodyne sensing; 6.6 Long-Frame-Time Framing Detectors for LiDAR; 6.7 Ghost LiDARs; 6.8 LiDAR Image Stabilization; 6.9 Optical-Time-of-Flight Flash LiDAR; 6.9.1 Summary of advantages and disadvantages of OTOF cameras; Problems and Solutions; References; 7 LiDAR Beam Steering and Optics; 7.1 Mechanical Beam-Steering Approaches | ||
500 | |a - for LiDAR; 7.1.1 Gimbals; 7.1.2 Fast-steering mirrors; 7.1.3 Risley prisms and Risley gratings; 7.1.4 Rotating polygonal mirrors; 7.1.5 MEMS beam steering for LiDAR; 7.1.6 Lenslet-based beam steering; 7.2 Nonmechanical Beam-Steering Approaches for Steering LiDAR Optical Beams; 7.2.1 OPD-based nonmechanical approaches; 7.2.2 Chip-scale optical phased arrays; 7.2.3 Electrowetting beam steering for LiDAR; 7.2.4 Using electronically written lenslets for lenslet-based beam steering; 7.2.5 Beam steering using EO effects; 7.2.6 Phase-based nonmechanical beam steering; 7.3 Some Optical Design Considerations for LiDAR; 7.3.1 Geometrical optics; 7.3.2 Adaptive optics systems; 7.3.3 Adaptive optics elements; Problems and Solutions; Notes and References; 8 LiDAR Processing; 8.1 Introduction; 8.2 Generating LiDAR Images/Information; 8.2.1 Range measurement processing; 8.2.2 Range resolution of | ||
500 | |a - LiDAR; 8.2.3 Angle LiDAR processing; 8.2.4 Gathering information from a temporally coherent LiDAR; 8.2.5 General LiDAR processing; 8.2.6 Target classification using LiDAR; Problems and Solutions; References; 9 Figures of Merit, Testing, | ||
500 | |a - and Calibration for LiDAR; 9.1 Introduction; 9.2 LiDAR Characterization and Figures of Merit; 9.2.1 Ideal point response main lobe width; 9.2.2 Integrated sidelobe ratio; 9.2.3 Peak sidelobe ratio; 9.2.4 Spurious sidelobe ratio; 9.2.5 Noise-equivalent vibration velocity; 9.2.6 Ambiguity velocity; 9.2.7 Unambiguous range; 9.3 LiDAR Testing; 9.3.1 Angle/angle/range resolution testing; 9.3.2 Velocity measurement; 9.3.3 Measuring range walk; 9.4 LiDAR Calibration; 9.4.1 Dark nonuniform correction; 9.4.2 Results of correction; Problems and Solutions; References; 10 LiDAR Performance Metrics; 10.1 Image Quality Metrics; 10.1.1 Object parameters; 10.2 LiDAR Parameters; 10.3 Image Parameters: National Imagery Interpretability Rating Scale (NIIRS); 10.4 3D Metrics for LiDAR Images; 10.5 General Image Quality Equations; 10.6 Quality Metrics Associated with Automatic Target Detection, Recognition, | ||
500 | |a - or Identification; 10.7 Information Theory Related to Image Quality Metrics; 10.8 Image Quality Metrics Based on Alternative Basis Sets; 10.9 Eigenmodes; 10.10 Compressive Sensing; 10.10.1 Knowledge-enhanced compressive sensing; 10.10.2 Scale-invariant feature transform; 10.11 Machine Learning; 10.12 Processing to Obtain Imagery; 10.13 Range Resolutions in EO/IR Imagers; 10.14 Current LiDAR Metric Standards; 10.15 Conclusions; Appendix: MATLAB code to Fourier transform an image; Problems and Solutions; Notes and References; 11 Significant Applications of LiDAR; 11.1 Auto LiDAR; 11.1.1 Introduction; 11.1.2 Resolution; 11.1.3 Frame rate; 11.1.4 Laser options; 11.1.5 Eye safety; 11.1.6 Unambiguous range; 11.1.7 Required laser energy per pulse and repetition rate; 11.1.8 Obscurants considered for auto LiDAR; 11.1.9 Keeping the auto-LiDAR aperture clear; 11.2 3D Mapping LiDAR; 11.2.1 Introduction to 3D mapping LiDAR; | ||
500 | |a - 11.2.2 3D mapping LiDAR design; 11.3 Laser Vibrometers; 11.3.1 Designing a laser vibrometer; 11.4 Wind Sensing; Problems and Solutions; References; Index | ||
650 | 4 | |a Optical radar | |
650 | 0 | 7 | |a Lidar |0 (DE-588)4167607-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lidar |0 (DE-588)4167607-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-1-5106-2540-2 |z 1-5106-2540-2 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-1-5106-2541-9 |z 1-5106-2541-0 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe (Kindle/Mobi) |z 978-1-5106-2542-6 |z 1-5106-2542-9 |
999 | |a oai:aleph.bib-bvb.de:BVB01-031442911 |
Datensatz im Suchindex
_version_ | 1804180337654235136 |
---|---|
any_adam_object | |
author | McManamon, Paul F. 1946- |
author_GND | (DE-588)1221541439 |
author_facet | McManamon, Paul F. 1946- |
author_role | aut |
author_sort | McManamon, Paul F. 1946- |
author_variant | p f m pf pfm |
building | Verbundindex |
bvnumber | BV046061596 |
classification_rvk | UH 7600 ZQ 3910 |
classification_tum | GEO 613 MSR 420 |
ctrlnum | (OCoLC)1120139411 (DE-599)BVBBV046061596 |
discipline | Geowissenschaften Physik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09451nam a2200553 c 4500</leader><controlfield tag="001">BV046061596</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240110 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">190723s2019 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781510625396</subfield><subfield code="9">978-1-5106-2539-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1510625399</subfield><subfield code="9">1-5106-2539-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781510625396</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1120139411</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046061596</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-1102</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 7600</subfield><subfield code="0">(DE-625)145777:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZQ 3910</subfield><subfield code="0">(DE-625)158088:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">GEO 613</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MSR 420</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McManamon, Paul F.</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1221541439</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">LiDAR technologies and systems</subfield><subfield code="c">Paul McManamon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Bellingham, Washington, USA</subfield><subfield code="b">SPIE Press</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 504 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface; 1 Introduction to LiDAR; 1.1 Context of LiDAR; 1.2 Conceptual Discussion of LiDAR; 1.3 Terms for Active EO Sensing; 1.4 Types of LiDARs; 1.4.1 Some LiDARs for surface-scattering (hard) targets; 1.4.2 Some LiDARS for volume-scattering (soft) targets; 1.5 LiDAR Detection Modes; 1.6 Flash LiDAR versus Scanning LiDAR; 1.7 Eye Safety Considerations; 1.8 Laser Safety Categories; 1.9 Monostatic versus Bistatic LiDAR; 1.10 Transmit/Receive Isolation; 1.11 Major Devices in a LiDAR; 1.11.1 Laser sources; 1.11.2 Receivers; 1.11.3 Apertures; 1.12 Organization of this Book; Problems and Solutions; References; 2 History of LiDAR; 2.1 Rangefinders, Altimeters, </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - and Designators; 2.1.1 First steps of rangerfinders; 2.1.2 Long-distance rangefinders; 2.1.3 Laser altimeters; 2.1.4 Laser designators; 2.1.5 Obstacle avoidance applications; 2.2 Early Coherent LiDARs; 2.2.1 Early work at MIT Lincoln Lab; 2.2.2 Early coherent LiDAR airborne applications; 2.2.3 Autonomous navigation using coherent LiDAR; 2.2.4 Atmospheric wind sensing; 2.2.5 Laser vibrometry; 2.2.6 Synthetic-aperture LiDAR; 2.3 Early Space-based LiDAR; 2.4 Flight-based Laser Vibrometers; 2.5 Environmental LiDARs; 2.5.1 Early steps; 2.5.2 Multiwavelength LiDARs; 2.5.3 LiDAR sensing in China; 2.5.4 LiDAR sensing in Japan; 2.6 Imaging LiDARs; 2.6.1 Early LiDAR imaging; 2.6.2 Imaging LiDARs for manufacturing; 2.6.3 Range-gated imaging programs; 2.6.4 3D LiDAR; 2.6.5 Imaging for weapon guidance; 2.6.6 Flash-imaging LiDAR; 2.6.7 Mapping LiDAR; 2.6.8 LiDARs </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - for underwater: laser-based bathymetry; 2.6.9 Laser micro-radar; 2.7 History Conclusion; References; 3 LiDAR Range Equation; 3.1 Introduction to the LiDAR Range Equation; 3.2 Illuminator Beam; 3.3 LiDAR Cross-Section; 3.3.1 Cross-section of a corner cube; 3.4 Link Budget Range Equation; 3.5 Atmospheric Effects; 3.5.1 Atmospheric scattering; 3.5.2 Atmospheric turbulence; 3.5.3 Aero-optical effects on LiDAR; 3.5.4 Extended (deep) turbulence; 3.5.5 Speckle; Problems and Solutions; References; 4 Types of LiDAR; 4.1 Direct-Detection LiDAR; 4.1.1 1D range-only LiDAR; 4.1.2 Tomographic imaging LiDAR; 4.1.3 Range-gated active imaging (2D LiDAR); 4.1.4 3D scanning LiDAR; 4.1.5 Flash imaging; 4.1.6 3D mapping applications; 4.1.7 Laser-induced breakdown spectroscopy; 4.1.8 Laser-induced fluorescence; 4.1.9 Active multispectral LiDAR; 4.1.10 LiDARs using polarization as a discriminant; 4.2 </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Coherent LiDAR; 4.2.1 Laser vibration detection; 4.2.2 Range-Doppler imaging LiDAR; 4.2.3 Speckle imaging LiDAR; 4.2.4 Aperture-synthesis-based LiDAR; 4.3 Multiple-Input, </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Multiple-Output Active EO Sensing; Appendix: MATLAB (R) program showing synthetic-aperture pupil planes and MTFs; Problems and Solutions; References; 5 LiDAR Sources and Modulations; 5.1 Laser Background Discussion; 5.2 Laser Waveforms for LiDAR; 5.2.1 Introduction; 5.2.2 High time-bandwidth product waveforms; 5.2.3 Radiofrequency modulation of a direct-detection LiDAR; 5.2.4 Femtosecond-pulse-modulation LiDAR; 5.2.5 Laser resonators; 5.2.6 Three-level and four-level lasers; 5.2.7 Laser-pumping considerations; 5.2.8 Q-switched lasers for LiDAR; 5.2.9 Mode-locked lasers for LiDAR; 5.2.10 Laser seeding for LiDAR; 5.2.11 Laser amplifier for LiDAR; 5.3 Lasers Used in LiDAR; 5.3.1 Diode lasers for LiDAR; 5.4 Bulk Solid State Lasers for LiDAR; 5.4.1 Fiber lasers for LiDAR; 5.4.2 Nonlinear devices to change LiDAR wavelength; 5.5 Fiber Format; Problems and Solutions; References; 6 LiDAR Receivers; 6.1 </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Introduction to LiDAR Receivers; 6.2 LiDAR Signal-to-Noise Ratio; 6.2.1 Noise probability density functions; 6.2.2 Thermal noise; 6.2.3 Shot noise; 6.2.4 Background noise; 6.2.5 Dark current, 1/f noise, </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - and excess noise; 6.3 Avalanche Photodiodes and Direct Detection; 6.3.1 Linear-mode APD arrays for LiDAR; 6.3.2 Direct-detection GMAPD LiDAR camera; 6.4 Silicon Detectors; 6.5 Heterodyne Detection; 6.5.1 Temporal heterodyne detection; 6.5.2 Heterodyne mixing efficiency; 6.5.3 Quadrature detection; 6.5.4 Carrier-to-noise ratio (CNR) for temporal heterodyne detection; 6.5.5 Spatial heterodyne detection / digital holography; 6.5.6 Receivers for coherent LiDARs; 6.5.7 Geiger-mode APDs for coherent imaging; 6.5.8 PIN diode or LMAPDs for coherent imaging; 6.5.9 Sampling associated with temporal heterodyne sensing; 6.6 Long-Frame-Time Framing Detectors for LiDAR; 6.7 Ghost LiDARs; 6.8 LiDAR Image Stabilization; 6.9 Optical-Time-of-Flight Flash LiDAR; 6.9.1 Summary of advantages and disadvantages of OTOF cameras; Problems and Solutions; References; 7 LiDAR Beam Steering and Optics; 7.1 Mechanical Beam-Steering Approaches </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - for LiDAR; 7.1.1 Gimbals; 7.1.2 Fast-steering mirrors; 7.1.3 Risley prisms and Risley gratings; 7.1.4 Rotating polygonal mirrors; 7.1.5 MEMS beam steering for LiDAR; 7.1.6 Lenslet-based beam steering; 7.2 Nonmechanical Beam-Steering Approaches for Steering LiDAR Optical Beams; 7.2.1 OPD-based nonmechanical approaches; 7.2.2 Chip-scale optical phased arrays; 7.2.3 Electrowetting beam steering for LiDAR; 7.2.4 Using electronically written lenslets for lenslet-based beam steering; 7.2.5 Beam steering using EO effects; 7.2.6 Phase-based nonmechanical beam steering; 7.3 Some Optical Design Considerations for LiDAR; 7.3.1 Geometrical optics; 7.3.2 Adaptive optics systems; 7.3.3 Adaptive optics elements; Problems and Solutions; Notes and References; 8 LiDAR Processing; 8.1 Introduction; 8.2 Generating LiDAR Images/Information; 8.2.1 Range measurement processing; 8.2.2 Range resolution of </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - LiDAR; 8.2.3 Angle LiDAR processing; 8.2.4 Gathering information from a temporally coherent LiDAR; 8.2.5 General LiDAR processing; 8.2.6 Target classification using LiDAR; Problems and Solutions; References; 9 Figures of Merit, Testing, </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - and Calibration for LiDAR; 9.1 Introduction; 9.2 LiDAR Characterization and Figures of Merit; 9.2.1 Ideal point response main lobe width; 9.2.2 Integrated sidelobe ratio; 9.2.3 Peak sidelobe ratio; 9.2.4 Spurious sidelobe ratio; 9.2.5 Noise-equivalent vibration velocity; 9.2.6 Ambiguity velocity; 9.2.7 Unambiguous range; 9.3 LiDAR Testing; 9.3.1 Angle/angle/range resolution testing; 9.3.2 Velocity measurement; 9.3.3 Measuring range walk; 9.4 LiDAR Calibration; 9.4.1 Dark nonuniform correction; 9.4.2 Results of correction; Problems and Solutions; References; 10 LiDAR Performance Metrics; 10.1 Image Quality Metrics; 10.1.1 Object parameters; 10.2 LiDAR Parameters; 10.3 Image Parameters: National Imagery Interpretability Rating Scale (NIIRS); 10.4 3D Metrics for LiDAR Images; 10.5 General Image Quality Equations; 10.6 Quality Metrics Associated with Automatic Target Detection, Recognition, </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - or Identification; 10.7 Information Theory Related to Image Quality Metrics; 10.8 Image Quality Metrics Based on Alternative Basis Sets; 10.9 Eigenmodes; 10.10 Compressive Sensing; 10.10.1 Knowledge-enhanced compressive sensing; 10.10.2 Scale-invariant feature transform; 10.11 Machine Learning; 10.12 Processing to Obtain Imagery; 10.13 Range Resolutions in EO/IR Imagers; 10.14 Current LiDAR Metric Standards; 10.15 Conclusions; Appendix: MATLAB code to Fourier transform an image; Problems and Solutions; Notes and References; 11 Significant Applications of LiDAR; 11.1 Auto LiDAR; 11.1.1 Introduction; 11.1.2 Resolution; 11.1.3 Frame rate; 11.1.4 Laser options; 11.1.5 Eye safety; 11.1.6 Unambiguous range; 11.1.7 Required laser energy per pulse and repetition rate; 11.1.8 Obscurants considered for auto LiDAR; 11.1.9 Keeping the auto-LiDAR aperture clear; 11.2 3D Mapping LiDAR; 11.2.1 Introduction to 3D mapping LiDAR; </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 11.2.2 3D mapping LiDAR design; 11.3 Laser Vibrometers; 11.3.1 Designing a laser vibrometer; 11.4 Wind Sensing; Problems and Solutions; References; Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical radar</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lidar</subfield><subfield code="0">(DE-588)4167607-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lidar</subfield><subfield code="0">(DE-588)4167607-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-1-5106-2540-2</subfield><subfield code="z">1-5106-2540-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-1-5106-2541-9</subfield><subfield code="z">1-5106-2541-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe (Kindle/Mobi)</subfield><subfield code="z">978-1-5106-2542-6</subfield><subfield code="z">1-5106-2542-9</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031442911</subfield></datafield></record></collection> |
id | DE-604.BV046061596 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:34:10Z |
institution | BVB |
isbn | 9781510625396 1510625399 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031442911 |
oclc_num | 1120139411 |
open_access_boolean | |
owner | DE-29T DE-573 DE-91 DE-BY-TUM DE-1102 |
owner_facet | DE-29T DE-573 DE-91 DE-BY-TUM DE-1102 |
physical | xiv, 504 Seiten Illustrationen, Diagramme |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | SPIE Press |
record_format | marc |
spelling | McManamon, Paul F. 1946- Verfasser (DE-588)1221541439 aut LiDAR technologies and systems Paul McManamon Bellingham, Washington, USA SPIE Press [2019] xiv, 504 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Preface; 1 Introduction to LiDAR; 1.1 Context of LiDAR; 1.2 Conceptual Discussion of LiDAR; 1.3 Terms for Active EO Sensing; 1.4 Types of LiDARs; 1.4.1 Some LiDARs for surface-scattering (hard) targets; 1.4.2 Some LiDARS for volume-scattering (soft) targets; 1.5 LiDAR Detection Modes; 1.6 Flash LiDAR versus Scanning LiDAR; 1.7 Eye Safety Considerations; 1.8 Laser Safety Categories; 1.9 Monostatic versus Bistatic LiDAR; 1.10 Transmit/Receive Isolation; 1.11 Major Devices in a LiDAR; 1.11.1 Laser sources; 1.11.2 Receivers; 1.11.3 Apertures; 1.12 Organization of this Book; Problems and Solutions; References; 2 History of LiDAR; 2.1 Rangefinders, Altimeters, - and Designators; 2.1.1 First steps of rangerfinders; 2.1.2 Long-distance rangefinders; 2.1.3 Laser altimeters; 2.1.4 Laser designators; 2.1.5 Obstacle avoidance applications; 2.2 Early Coherent LiDARs; 2.2.1 Early work at MIT Lincoln Lab; 2.2.2 Early coherent LiDAR airborne applications; 2.2.3 Autonomous navigation using coherent LiDAR; 2.2.4 Atmospheric wind sensing; 2.2.5 Laser vibrometry; 2.2.6 Synthetic-aperture LiDAR; 2.3 Early Space-based LiDAR; 2.4 Flight-based Laser Vibrometers; 2.5 Environmental LiDARs; 2.5.1 Early steps; 2.5.2 Multiwavelength LiDARs; 2.5.3 LiDAR sensing in China; 2.5.4 LiDAR sensing in Japan; 2.6 Imaging LiDARs; 2.6.1 Early LiDAR imaging; 2.6.2 Imaging LiDARs for manufacturing; 2.6.3 Range-gated imaging programs; 2.6.4 3D LiDAR; 2.6.5 Imaging for weapon guidance; 2.6.6 Flash-imaging LiDAR; 2.6.7 Mapping LiDAR; 2.6.8 LiDARs - for underwater: laser-based bathymetry; 2.6.9 Laser micro-radar; 2.7 History Conclusion; References; 3 LiDAR Range Equation; 3.1 Introduction to the LiDAR Range Equation; 3.2 Illuminator Beam; 3.3 LiDAR Cross-Section; 3.3.1 Cross-section of a corner cube; 3.4 Link Budget Range Equation; 3.5 Atmospheric Effects; 3.5.1 Atmospheric scattering; 3.5.2 Atmospheric turbulence; 3.5.3 Aero-optical effects on LiDAR; 3.5.4 Extended (deep) turbulence; 3.5.5 Speckle; Problems and Solutions; References; 4 Types of LiDAR; 4.1 Direct-Detection LiDAR; 4.1.1 1D range-only LiDAR; 4.1.2 Tomographic imaging LiDAR; 4.1.3 Range-gated active imaging (2D LiDAR); 4.1.4 3D scanning LiDAR; 4.1.5 Flash imaging; 4.1.6 3D mapping applications; 4.1.7 Laser-induced breakdown spectroscopy; 4.1.8 Laser-induced fluorescence; 4.1.9 Active multispectral LiDAR; 4.1.10 LiDARs using polarization as a discriminant; 4.2 - Coherent LiDAR; 4.2.1 Laser vibration detection; 4.2.2 Range-Doppler imaging LiDAR; 4.2.3 Speckle imaging LiDAR; 4.2.4 Aperture-synthesis-based LiDAR; 4.3 Multiple-Input, - Multiple-Output Active EO Sensing; Appendix: MATLAB (R) program showing synthetic-aperture pupil planes and MTFs; Problems and Solutions; References; 5 LiDAR Sources and Modulations; 5.1 Laser Background Discussion; 5.2 Laser Waveforms for LiDAR; 5.2.1 Introduction; 5.2.2 High time-bandwidth product waveforms; 5.2.3 Radiofrequency modulation of a direct-detection LiDAR; 5.2.4 Femtosecond-pulse-modulation LiDAR; 5.2.5 Laser resonators; 5.2.6 Three-level and four-level lasers; 5.2.7 Laser-pumping considerations; 5.2.8 Q-switched lasers for LiDAR; 5.2.9 Mode-locked lasers for LiDAR; 5.2.10 Laser seeding for LiDAR; 5.2.11 Laser amplifier for LiDAR; 5.3 Lasers Used in LiDAR; 5.3.1 Diode lasers for LiDAR; 5.4 Bulk Solid State Lasers for LiDAR; 5.4.1 Fiber lasers for LiDAR; 5.4.2 Nonlinear devices to change LiDAR wavelength; 5.5 Fiber Format; Problems and Solutions; References; 6 LiDAR Receivers; 6.1 - Introduction to LiDAR Receivers; 6.2 LiDAR Signal-to-Noise Ratio; 6.2.1 Noise probability density functions; 6.2.2 Thermal noise; 6.2.3 Shot noise; 6.2.4 Background noise; 6.2.5 Dark current, 1/f noise, - and excess noise; 6.3 Avalanche Photodiodes and Direct Detection; 6.3.1 Linear-mode APD arrays for LiDAR; 6.3.2 Direct-detection GMAPD LiDAR camera; 6.4 Silicon Detectors; 6.5 Heterodyne Detection; 6.5.1 Temporal heterodyne detection; 6.5.2 Heterodyne mixing efficiency; 6.5.3 Quadrature detection; 6.5.4 Carrier-to-noise ratio (CNR) for temporal heterodyne detection; 6.5.5 Spatial heterodyne detection / digital holography; 6.5.6 Receivers for coherent LiDARs; 6.5.7 Geiger-mode APDs for coherent imaging; 6.5.8 PIN diode or LMAPDs for coherent imaging; 6.5.9 Sampling associated with temporal heterodyne sensing; 6.6 Long-Frame-Time Framing Detectors for LiDAR; 6.7 Ghost LiDARs; 6.8 LiDAR Image Stabilization; 6.9 Optical-Time-of-Flight Flash LiDAR; 6.9.1 Summary of advantages and disadvantages of OTOF cameras; Problems and Solutions; References; 7 LiDAR Beam Steering and Optics; 7.1 Mechanical Beam-Steering Approaches - for LiDAR; 7.1.1 Gimbals; 7.1.2 Fast-steering mirrors; 7.1.3 Risley prisms and Risley gratings; 7.1.4 Rotating polygonal mirrors; 7.1.5 MEMS beam steering for LiDAR; 7.1.6 Lenslet-based beam steering; 7.2 Nonmechanical Beam-Steering Approaches for Steering LiDAR Optical Beams; 7.2.1 OPD-based nonmechanical approaches; 7.2.2 Chip-scale optical phased arrays; 7.2.3 Electrowetting beam steering for LiDAR; 7.2.4 Using electronically written lenslets for lenslet-based beam steering; 7.2.5 Beam steering using EO effects; 7.2.6 Phase-based nonmechanical beam steering; 7.3 Some Optical Design Considerations for LiDAR; 7.3.1 Geometrical optics; 7.3.2 Adaptive optics systems; 7.3.3 Adaptive optics elements; Problems and Solutions; Notes and References; 8 LiDAR Processing; 8.1 Introduction; 8.2 Generating LiDAR Images/Information; 8.2.1 Range measurement processing; 8.2.2 Range resolution of - LiDAR; 8.2.3 Angle LiDAR processing; 8.2.4 Gathering information from a temporally coherent LiDAR; 8.2.5 General LiDAR processing; 8.2.6 Target classification using LiDAR; Problems and Solutions; References; 9 Figures of Merit, Testing, - and Calibration for LiDAR; 9.1 Introduction; 9.2 LiDAR Characterization and Figures of Merit; 9.2.1 Ideal point response main lobe width; 9.2.2 Integrated sidelobe ratio; 9.2.3 Peak sidelobe ratio; 9.2.4 Spurious sidelobe ratio; 9.2.5 Noise-equivalent vibration velocity; 9.2.6 Ambiguity velocity; 9.2.7 Unambiguous range; 9.3 LiDAR Testing; 9.3.1 Angle/angle/range resolution testing; 9.3.2 Velocity measurement; 9.3.3 Measuring range walk; 9.4 LiDAR Calibration; 9.4.1 Dark nonuniform correction; 9.4.2 Results of correction; Problems and Solutions; References; 10 LiDAR Performance Metrics; 10.1 Image Quality Metrics; 10.1.1 Object parameters; 10.2 LiDAR Parameters; 10.3 Image Parameters: National Imagery Interpretability Rating Scale (NIIRS); 10.4 3D Metrics for LiDAR Images; 10.5 General Image Quality Equations; 10.6 Quality Metrics Associated with Automatic Target Detection, Recognition, - or Identification; 10.7 Information Theory Related to Image Quality Metrics; 10.8 Image Quality Metrics Based on Alternative Basis Sets; 10.9 Eigenmodes; 10.10 Compressive Sensing; 10.10.1 Knowledge-enhanced compressive sensing; 10.10.2 Scale-invariant feature transform; 10.11 Machine Learning; 10.12 Processing to Obtain Imagery; 10.13 Range Resolutions in EO/IR Imagers; 10.14 Current LiDAR Metric Standards; 10.15 Conclusions; Appendix: MATLAB code to Fourier transform an image; Problems and Solutions; Notes and References; 11 Significant Applications of LiDAR; 11.1 Auto LiDAR; 11.1.1 Introduction; 11.1.2 Resolution; 11.1.3 Frame rate; 11.1.4 Laser options; 11.1.5 Eye safety; 11.1.6 Unambiguous range; 11.1.7 Required laser energy per pulse and repetition rate; 11.1.8 Obscurants considered for auto LiDAR; 11.1.9 Keeping the auto-LiDAR aperture clear; 11.2 3D Mapping LiDAR; 11.2.1 Introduction to 3D mapping LiDAR; - 11.2.2 3D mapping LiDAR design; 11.3 Laser Vibrometers; 11.3.1 Designing a laser vibrometer; 11.4 Wind Sensing; Problems and Solutions; References; Index Optical radar Lidar (DE-588)4167607-5 gnd rswk-swf Lidar (DE-588)4167607-5 s DE-604 Erscheint auch als Online-Ausgabe, PDF 978-1-5106-2540-2 1-5106-2540-2 Erscheint auch als Online-Ausgabe, EPUB 978-1-5106-2541-9 1-5106-2541-0 Erscheint auch als Online-Ausgabe (Kindle/Mobi) 978-1-5106-2542-6 1-5106-2542-9 |
spellingShingle | McManamon, Paul F. 1946- LiDAR technologies and systems Optical radar Lidar (DE-588)4167607-5 gnd |
subject_GND | (DE-588)4167607-5 |
title | LiDAR technologies and systems |
title_auth | LiDAR technologies and systems |
title_exact_search | LiDAR technologies and systems |
title_full | LiDAR technologies and systems Paul McManamon |
title_fullStr | LiDAR technologies and systems Paul McManamon |
title_full_unstemmed | LiDAR technologies and systems Paul McManamon |
title_short | LiDAR technologies and systems |
title_sort | lidar technologies and systems |
topic | Optical radar Lidar (DE-588)4167607-5 gnd |
topic_facet | Optical radar Lidar |
work_keys_str_mv | AT mcmanamonpaulf lidartechnologiesandsystems |