LiDAR technologies and systems:
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: McManamon, Paul F. 1946- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Bellingham, Washington, USA SPIE Press [2019]
Schlagworte:
Beschreibung:Preface; 1 Introduction to LiDAR; 1.1 Context of LiDAR; 1.2 Conceptual Discussion of LiDAR; 1.3 Terms for Active EO Sensing; 1.4 Types of LiDARs; 1.4.1 Some LiDARs for surface-scattering (hard) targets; 1.4.2 Some LiDARS for volume-scattering (soft) targets; 1.5 LiDAR Detection Modes; 1.6 Flash LiDAR versus Scanning LiDAR; 1.7 Eye Safety Considerations; 1.8 Laser Safety Categories; 1.9 Monostatic versus Bistatic LiDAR; 1.10 Transmit/Receive Isolation; 1.11 Major Devices in a LiDAR; 1.11.1 Laser sources; 1.11.2 Receivers; 1.11.3 Apertures; 1.12 Organization of this Book; Problems and Solutions; References; 2 History of LiDAR; 2.1 Rangefinders, Altimeters,
- and Designators; 2.1.1 First steps of rangerfinders; 2.1.2 Long-distance rangefinders; 2.1.3 Laser altimeters; 2.1.4 Laser designators; 2.1.5 Obstacle avoidance applications; 2.2 Early Coherent LiDARs; 2.2.1 Early work at MIT Lincoln Lab; 2.2.2 Early coherent LiDAR airborne applications; 2.2.3 Autonomous navigation using coherent LiDAR; 2.2.4 Atmospheric wind sensing; 2.2.5 Laser vibrometry; 2.2.6 Synthetic-aperture LiDAR; 2.3 Early Space-based LiDAR; 2.4 Flight-based Laser Vibrometers; 2.5 Environmental LiDARs; 2.5.1 Early steps; 2.5.2 Multiwavelength LiDARs; 2.5.3 LiDAR sensing in China; 2.5.4 LiDAR sensing in Japan; 2.6 Imaging LiDARs; 2.6.1 Early LiDAR imaging; 2.6.2 Imaging LiDARs for manufacturing; 2.6.3 Range-gated imaging programs; 2.6.4 3D LiDAR; 2.6.5 Imaging for weapon guidance; 2.6.6 Flash-imaging LiDAR; 2.6.7 Mapping LiDAR; 2.6.8 LiDARs
- for underwater: laser-based bathymetry; 2.6.9 Laser micro-radar; 2.7 History Conclusion; References; 3 LiDAR Range Equation; 3.1 Introduction to the LiDAR Range Equation; 3.2 Illuminator Beam; 3.3 LiDAR Cross-Section; 3.3.1 Cross-section of a corner cube; 3.4 Link Budget Range Equation; 3.5 Atmospheric Effects; 3.5.1 Atmospheric scattering; 3.5.2 Atmospheric turbulence; 3.5.3 Aero-optical effects on LiDAR; 3.5.4 Extended (deep) turbulence; 3.5.5 Speckle; Problems and Solutions; References; 4 Types of LiDAR; 4.1 Direct-Detection LiDAR; 4.1.1 1D range-only LiDAR; 4.1.2 Tomographic imaging LiDAR; 4.1.3 Range-gated active imaging (2D LiDAR); 4.1.4 3D scanning LiDAR; 4.1.5 Flash imaging; 4.1.6 3D mapping applications; 4.1.7 Laser-induced breakdown spectroscopy; 4.1.8 Laser-induced fluorescence; 4.1.9 Active multispectral LiDAR; 4.1.10 LiDARs using polarization as a discriminant; 4.2
- Coherent LiDAR; 4.2.1 Laser vibration detection; 4.2.2 Range-Doppler imaging LiDAR; 4.2.3 Speckle imaging LiDAR; 4.2.4 Aperture-synthesis-based LiDAR; 4.3 Multiple-Input,
- Multiple-Output Active EO Sensing; Appendix: MATLAB (R) program showing synthetic-aperture pupil planes and MTFs; Problems and Solutions; References; 5 LiDAR Sources and Modulations; 5.1 Laser Background Discussion; 5.2 Laser Waveforms for LiDAR; 5.2.1 Introduction; 5.2.2 High time-bandwidth product waveforms; 5.2.3 Radiofrequency modulation of a direct-detection LiDAR; 5.2.4 Femtosecond-pulse-modulation LiDAR; 5.2.5 Laser resonators; 5.2.6 Three-level and four-level lasers; 5.2.7 Laser-pumping considerations; 5.2.8 Q-switched lasers for LiDAR; 5.2.9 Mode-locked lasers for LiDAR; 5.2.10 Laser seeding for LiDAR; 5.2.11 Laser amplifier for LiDAR; 5.3 Lasers Used in LiDAR; 5.3.1 Diode lasers for LiDAR; 5.4 Bulk Solid State Lasers for LiDAR; 5.4.1 Fiber lasers for LiDAR; 5.4.2 Nonlinear devices to change LiDAR wavelength; 5.5 Fiber Format; Problems and Solutions; References; 6 LiDAR Receivers; 6.1
- Introduction to LiDAR Receivers; 6.2 LiDAR Signal-to-Noise Ratio; 6.2.1 Noise probability density functions; 6.2.2 Thermal noise; 6.2.3 Shot noise; 6.2.4 Background noise; 6.2.5 Dark current, 1/f noise,
- and excess noise; 6.3 Avalanche Photodiodes and Direct Detection; 6.3.1 Linear-mode APD arrays for LiDAR; 6.3.2 Direct-detection GMAPD LiDAR camera; 6.4 Silicon Detectors; 6.5 Heterodyne Detection; 6.5.1 Temporal heterodyne detection; 6.5.2 Heterodyne mixing efficiency; 6.5.3 Quadrature detection; 6.5.4 Carrier-to-noise ratio (CNR) for temporal heterodyne detection; 6.5.5 Spatial heterodyne detection / digital holography; 6.5.6 Receivers for coherent LiDARs; 6.5.7 Geiger-mode APDs for coherent imaging; 6.5.8 PIN diode or LMAPDs for coherent imaging; 6.5.9 Sampling associated with temporal heterodyne sensing; 6.6 Long-Frame-Time Framing Detectors for LiDAR; 6.7 Ghost LiDARs; 6.8 LiDAR Image Stabilization; 6.9 Optical-Time-of-Flight Flash LiDAR; 6.9.1 Summary of advantages and disadvantages of OTOF cameras; Problems and Solutions; References; 7 LiDAR Beam Steering and Optics; 7.1 Mechanical Beam-Steering Approaches
- for LiDAR; 7.1.1 Gimbals; 7.1.2 Fast-steering mirrors; 7.1.3 Risley prisms and Risley gratings; 7.1.4 Rotating polygonal mirrors; 7.1.5 MEMS beam steering for LiDAR; 7.1.6 Lenslet-based beam steering; 7.2 Nonmechanical Beam-Steering Approaches for Steering LiDAR Optical Beams; 7.2.1 OPD-based nonmechanical approaches; 7.2.2 Chip-scale optical phased arrays; 7.2.3 Electrowetting beam steering for LiDAR; 7.2.4 Using electronically written lenslets for lenslet-based beam steering; 7.2.5 Beam steering using EO effects; 7.2.6 Phase-based nonmechanical beam steering; 7.3 Some Optical Design Considerations for LiDAR; 7.3.1 Geometrical optics; 7.3.2 Adaptive optics systems; 7.3.3 Adaptive optics elements; Problems and Solutions; Notes and References; 8 LiDAR Processing; 8.1 Introduction; 8.2 Generating LiDAR Images/Information; 8.2.1 Range measurement processing; 8.2.2 Range resolution of
- LiDAR; 8.2.3 Angle LiDAR processing; 8.2.4 Gathering information from a temporally coherent LiDAR; 8.2.5 General LiDAR processing; 8.2.6 Target classification using LiDAR; Problems and Solutions; References; 9 Figures of Merit, Testing,
- and Calibration for LiDAR; 9.1 Introduction; 9.2 LiDAR Characterization and Figures of Merit; 9.2.1 Ideal point response main lobe width; 9.2.2 Integrated sidelobe ratio; 9.2.3 Peak sidelobe ratio; 9.2.4 Spurious sidelobe ratio; 9.2.5 Noise-equivalent vibration velocity; 9.2.6 Ambiguity velocity; 9.2.7 Unambiguous range; 9.3 LiDAR Testing; 9.3.1 Angle/angle/range resolution testing; 9.3.2 Velocity measurement; 9.3.3 Measuring range walk; 9.4 LiDAR Calibration; 9.4.1 Dark nonuniform correction; 9.4.2 Results of correction; Problems and Solutions; References; 10 LiDAR Performance Metrics; 10.1 Image Quality Metrics; 10.1.1 Object parameters; 10.2 LiDAR Parameters; 10.3 Image Parameters: National Imagery Interpretability Rating Scale (NIIRS); 10.4 3D Metrics for LiDAR Images; 10.5 General Image Quality Equations; 10.6 Quality Metrics Associated with Automatic Target Detection, Recognition,
- or Identification; 10.7 Information Theory Related to Image Quality Metrics; 10.8 Image Quality Metrics Based on Alternative Basis Sets; 10.9 Eigenmodes; 10.10 Compressive Sensing; 10.10.1 Knowledge-enhanced compressive sensing; 10.10.2 Scale-invariant feature transform; 10.11 Machine Learning; 10.12 Processing to Obtain Imagery; 10.13 Range Resolutions in EO/IR Imagers; 10.14 Current LiDAR Metric Standards; 10.15 Conclusions; Appendix: MATLAB code to Fourier transform an image; Problems and Solutions; Notes and References; 11 Significant Applications of LiDAR; 11.1 Auto LiDAR; 11.1.1 Introduction; 11.1.2 Resolution; 11.1.3 Frame rate; 11.1.4 Laser options; 11.1.5 Eye safety; 11.1.6 Unambiguous range; 11.1.7 Required laser energy per pulse and repetition rate; 11.1.8 Obscurants considered for auto LiDAR; 11.1.9 Keeping the auto-LiDAR aperture clear; 11.2 3D Mapping LiDAR; 11.2.1 Introduction to 3D mapping LiDAR;
- 11.2.2 3D mapping LiDAR design; 11.3 Laser Vibrometers; 11.3.1 Designing a laser vibrometer; 11.4 Wind Sensing; Problems and Solutions; References; Index
Beschreibung:xiv, 504 Seiten Illustrationen, Diagramme
ISBN:9781510625396
1510625399

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!