A transition to proof: an introduction to advanced mathematics
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
[2019]
|
Schriftenreihe: | Textbooks in mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xiii, 450 Seiten Diagramme 23 cm |
ISBN: | 9780367201579 0367201577 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046051426 | ||
003 | DE-604 | ||
005 | 20190912 | ||
007 | t | ||
008 | 190716s2019 xxu|||| |||| 00||| eng d | ||
020 | |a 9780367201579 |c hbk |9 978-0-367-20157-9 | ||
020 | |a 0367201577 |9 0-367-20157-7 | ||
035 | |a (OCoLC)1107884460 | ||
035 | |a (DE-599)BVBBV046051426 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-739 | ||
082 | 0 | |a 511.3 | |
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
100 | 1 | |a Nicholson, Neil R. |e Verfasser |0 (DE-588)1185778829 |4 aut | |
245 | 1 | 0 | |a A transition to proof |b an introduction to advanced mathematics |c Neil R. Nicholson |
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c [2019] | |
300 | |a xiii, 450 Seiten |b Diagramme |c 23 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Textbooks in mathematics | |
500 | |a Includes bibliographical references and index | ||
650 | 0 | 7 | |a Beweistheorie |0 (DE-588)4145177-6 |2 gnd |9 rswk-swf |
653 | 0 | |a Proof theory | |
689 | 0 | 0 | |a Beweistheorie |0 (DE-588)4145177-6 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031432928&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-031432928 |
Datensatz im Suchindex
_version_ | 1804180318774624256 |
---|---|
adam_text | Contents Preface 1 ix Symbolic Logic 1.1 Statements and Statement Forms .......................................... 1.2 Conditional and Biconditional Connective.............................. 1.3 Arguments ................................................................................. 1.4 Logical Deductions .................................................................. 2 Sets 2.1 2.2 2.3 2.4 What is Proof? ........................................................................ Direct Proofs.............................................................................. Direct Proofs: Set Element Method ....................................... Proof by Contrapositive and Contradiction........................... Proof by Cases........................................................................... 4 Mathematical Induction 4.1 4.2 4.3 Basics of Mathematical Induction .......................................... Strong Mathematical Induction ............................................. Applications of Induction: Number Theory ........................... 5 Relations 5.1 5.2 5.3 5.4 Mathematical Relations............................................................ Equivalence Relations............................................................... Order Relations ........................................................................ Congruence Modulo m Relation ............................................. 6 Functions 6.1 6.2 6.3 2 16 28 37 49 Set Theory Basics ..................................................................... Properties of Sets
..................................................................... Quantified Statements............................................................... Multiple Quantifiers and Arguments with Quantifiers .... 3 Introduction to Proofs 3.1 3.2 3.3 3.4 3.5 1 Functions Defined ..................................................................... Properties of Functions ............................................................ Composition and Invertibility ................................................ 50 63 78 88 103 105 120 135 147 159 171 172 187 203 221 222 237 250 262 279 280 298 313 vii
viii Contents 7 Cardinality 7.1 The Finite .................................................................................... 7.2 The Infinite: Countable .............................................................. 7.3 The Infinite: Uncountable........................................................... 327 328 345 358 8 Introduction to Topology 8.1 Topologies and Topological Spaces............................................ 8.2 Subspace and Product Topologies ............................................ 8.3 Closed Sets and Closure.............................................................. 8.4 Continuous Functions ................................................................. 371 372 380 388 398 Appendix A: Properties of Real NumberSystem 409 Appendix B: Proof Writing Tips 413 Appendix C: Selected Solutions and Hints 421 Bibliography 441 Index 445
|
any_adam_object | 1 |
author | Nicholson, Neil R. |
author_GND | (DE-588)1185778829 |
author_facet | Nicholson, Neil R. |
author_role | aut |
author_sort | Nicholson, Neil R. |
author_variant | n r n nr nrn |
building | Verbundindex |
bvnumber | BV046051426 |
classification_rvk | SK 130 |
ctrlnum | (OCoLC)1107884460 (DE-599)BVBBV046051426 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01489nam a2200385 c 4500</leader><controlfield tag="001">BV046051426</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190912 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">190716s2019 xxu|||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780367201579</subfield><subfield code="c">hbk</subfield><subfield code="9">978-0-367-20157-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0367201577</subfield><subfield code="9">0-367-20157-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1107884460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046051426</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nicholson, Neil R.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1185778829</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A transition to proof</subfield><subfield code="b">an introduction to advanced mathematics</subfield><subfield code="c">Neil R. Nicholson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 450 Seiten</subfield><subfield code="b">Diagramme</subfield><subfield code="c">23 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Textbooks in mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweistheorie</subfield><subfield code="0">(DE-588)4145177-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Proof theory</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Beweistheorie</subfield><subfield code="0">(DE-588)4145177-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031432928&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031432928</subfield></datafield></record></collection> |
id | DE-604.BV046051426 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:33:52Z |
institution | BVB |
isbn | 9780367201579 0367201577 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031432928 |
oclc_num | 1107884460 |
open_access_boolean | |
owner | DE-739 |
owner_facet | DE-739 |
physical | xiii, 450 Seiten Diagramme 23 cm |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | CRC Press |
record_format | marc |
series2 | Textbooks in mathematics |
spelling | Nicholson, Neil R. Verfasser (DE-588)1185778829 aut A transition to proof an introduction to advanced mathematics Neil R. Nicholson Boca Raton ; London ; New York CRC Press [2019] xiii, 450 Seiten Diagramme 23 cm txt rdacontent n rdamedia nc rdacarrier Textbooks in mathematics Includes bibliographical references and index Beweistheorie (DE-588)4145177-6 gnd rswk-swf Proof theory Beweistheorie (DE-588)4145177-6 s DE-604 Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031432928&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nicholson, Neil R. A transition to proof an introduction to advanced mathematics Beweistheorie (DE-588)4145177-6 gnd |
subject_GND | (DE-588)4145177-6 |
title | A transition to proof an introduction to advanced mathematics |
title_auth | A transition to proof an introduction to advanced mathematics |
title_exact_search | A transition to proof an introduction to advanced mathematics |
title_full | A transition to proof an introduction to advanced mathematics Neil R. Nicholson |
title_fullStr | A transition to proof an introduction to advanced mathematics Neil R. Nicholson |
title_full_unstemmed | A transition to proof an introduction to advanced mathematics Neil R. Nicholson |
title_short | A transition to proof |
title_sort | a transition to proof an introduction to advanced mathematics |
title_sub | an introduction to advanced mathematics |
topic | Beweistheorie (DE-588)4145177-6 gnd |
topic_facet | Beweistheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031432928&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT nicholsonneilr atransitiontoproofanintroductiontoadvancedmathematics |