Statistical distributions: applications and parameter estimates
This book gives a description of the group of statistical distributions that have ample application to studies in statistics and probability. Understanding statistical distributions is fundamental for researchers in almost all disciplines. The informed researcher will select the statistical distribu...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing
2017
|
Schlagworte: | |
Zusammenfassung: | This book gives a description of the group of statistical distributions that have ample application to studies in statistics and probability. Understanding statistical distributions is fundamental for researchers in almost all disciplines. The informed researcher will select the statistical distribution that best fits the data in the study at hand. Some of the distributions are well known to the general researcher and are in use in a wide variety of ways. Other useful distributions are less understood and are not in common use. The book describes when and how to apply each of the distributions in research studies, with a goal to identify the distribution that best applies to the study. The distributions are for continuous, discrete, and bivariate random variables. In most studies, the parameter values are not known a priori, and sample data is needed to estimate parameter values. In other scenarios, no sample data is available, and the researcher seeks some insight that allows the estimate of the parameter values to be gained. This handbook of statistical distributions provides a working knowledge of applying common and uncommon statistical distributions in research studies. These nineteen distributions are: continuous uniform, exponential, Erlang, gamma, beta, Weibull, normal, lognormal, left-truncated normal, right-truncated normal, triangular, discrete uniform, binomial, geometric, Pascal, Poisson, hyper-geometric, bivariate normal, and bivariate lognormal. Some are from continuous data and others are from discrete and bivariate data. This group of statistical distributions has ample application to studies in statistics and probability and practical use in real situations. Additionally, this book explains computing the cumulative probability of each distribution and estimating the parameter values either with sample data or without sample data. Examples are provided throughout to guide the reader. Accuracy in choosing and applying statistical distributions is particularly imperative for anyone who does statistical and probability analysis, including management scientists, market researchers, engineers, mathematicians, physicists, chemists, economists, social science researchers, and students in many disciplines |
Beschreibung: | Statistical Concepts -- Continuous Uniform -- Exponential -- Erlang -- Gamma -- Beta -- Weibull -- Normal -- Lognormal -- Left Truncated Normal -- Right Truncated Normal -- Triangular -- Discrete Uniform -- Binomial -- Geometric -- Pascal -- Poisson -- Hyper-Geometric -- Bivariate Normal -- Bivariate Lognormal |
Beschreibung: | xvii, 172 Seiten Illustrationen 24 cm |
ISBN: | 9783319651118 3319651110 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046031797 | ||
003 | DE-604 | ||
005 | 20190814 | ||
007 | t | ||
008 | 190703s2017 a||| |||| 00||| eng d | ||
020 | |a 9783319651118 |9 978-3-319-65111-8 | ||
020 | |a 3319651110 |9 3-319-65111-0 | ||
035 | |a (OCoLC)1015847394 | ||
035 | |a (DE-599)BVBBV046031797 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-521 | ||
084 | |a SK 800 |0 (DE-625)143256: |2 rvk | ||
100 | 1 | |a Thomopoulos, Nick T. |d 1931- |e Verfasser |0 (DE-588)1112471243 |4 aut | |
245 | 1 | 0 | |a Statistical distributions |b applications and parameter estimates |c Nick T. Thomopoulos |
264 | 1 | |a Cham |b Springer International Publishing |c 2017 | |
300 | |a xvii, 172 Seiten |b Illustrationen |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Statistical Concepts -- Continuous Uniform -- Exponential -- Erlang -- Gamma -- Beta -- Weibull -- Normal -- Lognormal -- Left Truncated Normal -- Right Truncated Normal -- Triangular -- Discrete Uniform -- Binomial -- Geometric -- Pascal -- Poisson -- Hyper-Geometric -- Bivariate Normal -- Bivariate Lognormal | ||
520 | 3 | |a This book gives a description of the group of statistical distributions that have ample application to studies in statistics and probability. Understanding statistical distributions is fundamental for researchers in almost all disciplines. The informed researcher will select the statistical distribution that best fits the data in the study at hand. Some of the distributions are well known to the general researcher and are in use in a wide variety of ways. Other useful distributions are less understood and are not in common use. The book describes when and how to apply each of the distributions in research studies, with a goal to identify the distribution that best applies to the study. The distributions are for continuous, discrete, and bivariate random variables. In most studies, the parameter values are not known a priori, and sample data is needed to estimate parameter values. | |
520 | 3 | |a In other scenarios, no sample data is available, and the researcher seeks some insight that allows the estimate of the parameter values to be gained. This handbook of statistical distributions provides a working knowledge of applying common and uncommon statistical distributions in research studies. These nineteen distributions are: continuous uniform, exponential, Erlang, gamma, beta, Weibull, normal, lognormal, left-truncated normal, right-truncated normal, triangular, discrete uniform, binomial, geometric, Pascal, Poisson, hyper-geometric, bivariate normal, and bivariate lognormal. Some are from continuous data and others are from discrete and bivariate data. This group of statistical distributions has ample application to studies in statistics and probability and practical use in real situations. Additionally, this book explains computing the cumulative probability of each distribution and estimating the parameter values either with sample data or without sample data. | |
520 | 3 | |a Examples are provided throughout to guide the reader. Accuracy in choosing and applying statistical distributions is particularly imperative for anyone who does statistical and probability analysis, including management scientists, market researchers, engineers, mathematicians, physicists, chemists, economists, social science researchers, and students in many disciplines | |
653 | 0 | |a Statistics | |
653 | 0 | |a Probabilities | |
653 | 0 | |a Commercial statistics | |
653 | 0 | |a Distribution (Probability theory) | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-319-65112-5 |z 3-319-65112-9 |
999 | |a oai:aleph.bib-bvb.de:BVB01-031413658 |
Datensatz im Suchindex
_version_ | 1804180282983579648 |
---|---|
any_adam_object | |
author | Thomopoulos, Nick T. 1931- |
author_GND | (DE-588)1112471243 |
author_facet | Thomopoulos, Nick T. 1931- |
author_role | aut |
author_sort | Thomopoulos, Nick T. 1931- |
author_variant | n t t nt ntt |
building | Verbundindex |
bvnumber | BV046031797 |
classification_rvk | SK 800 |
ctrlnum | (OCoLC)1015847394 (DE-599)BVBBV046031797 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03755nam a2200385 c 4500</leader><controlfield tag="001">BV046031797</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190814 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">190703s2017 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319651118</subfield><subfield code="9">978-3-319-65111-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3319651110</subfield><subfield code="9">3-319-65111-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1015847394</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046031797</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-521</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 800</subfield><subfield code="0">(DE-625)143256:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thomopoulos, Nick T.</subfield><subfield code="d">1931-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1112471243</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical distributions</subfield><subfield code="b">applications and parameter estimates</subfield><subfield code="c">Nick T. Thomopoulos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 172 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Statistical Concepts -- Continuous Uniform -- Exponential -- Erlang -- Gamma -- Beta -- Weibull -- Normal -- Lognormal -- Left Truncated Normal -- Right Truncated Normal -- Triangular -- Discrete Uniform -- Binomial -- Geometric -- Pascal -- Poisson -- Hyper-Geometric -- Bivariate Normal -- Bivariate Lognormal</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book gives a description of the group of statistical distributions that have ample application to studies in statistics and probability. Understanding statistical distributions is fundamental for researchers in almost all disciplines. The informed researcher will select the statistical distribution that best fits the data in the study at hand. Some of the distributions are well known to the general researcher and are in use in a wide variety of ways. Other useful distributions are less understood and are not in common use. The book describes when and how to apply each of the distributions in research studies, with a goal to identify the distribution that best applies to the study. The distributions are for continuous, discrete, and bivariate random variables. In most studies, the parameter values are not known a priori, and sample data is needed to estimate parameter values. </subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">In other scenarios, no sample data is available, and the researcher seeks some insight that allows the estimate of the parameter values to be gained. This handbook of statistical distributions provides a working knowledge of applying common and uncommon statistical distributions in research studies. These nineteen distributions are: continuous uniform, exponential, Erlang, gamma, beta, Weibull, normal, lognormal, left-truncated normal, right-truncated normal, triangular, discrete uniform, binomial, geometric, Pascal, Poisson, hyper-geometric, bivariate normal, and bivariate lognormal. Some are from continuous data and others are from discrete and bivariate data. This group of statistical distributions has ample application to studies in statistics and probability and practical use in real situations. Additionally, this book explains computing the cumulative probability of each distribution and estimating the parameter values either with sample data or without sample data. </subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Examples are provided throughout to guide the reader. Accuracy in choosing and applying statistical distributions is particularly imperative for anyone who does statistical and probability analysis, including management scientists, market researchers, engineers, mathematicians, physicists, chemists, economists, social science researchers, and students in many disciplines</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Statistics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Probabilities</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Commercial statistics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-319-65112-5</subfield><subfield code="z">3-319-65112-9</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031413658</subfield></datafield></record></collection> |
id | DE-604.BV046031797 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:33:18Z |
institution | BVB |
isbn | 9783319651118 3319651110 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031413658 |
oclc_num | 1015847394 |
open_access_boolean | |
owner | DE-521 |
owner_facet | DE-521 |
physical | xvii, 172 Seiten Illustrationen 24 cm |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Springer International Publishing |
record_format | marc |
spelling | Thomopoulos, Nick T. 1931- Verfasser (DE-588)1112471243 aut Statistical distributions applications and parameter estimates Nick T. Thomopoulos Cham Springer International Publishing 2017 xvii, 172 Seiten Illustrationen 24 cm txt rdacontent n rdamedia nc rdacarrier Statistical Concepts -- Continuous Uniform -- Exponential -- Erlang -- Gamma -- Beta -- Weibull -- Normal -- Lognormal -- Left Truncated Normal -- Right Truncated Normal -- Triangular -- Discrete Uniform -- Binomial -- Geometric -- Pascal -- Poisson -- Hyper-Geometric -- Bivariate Normal -- Bivariate Lognormal This book gives a description of the group of statistical distributions that have ample application to studies in statistics and probability. Understanding statistical distributions is fundamental for researchers in almost all disciplines. The informed researcher will select the statistical distribution that best fits the data in the study at hand. Some of the distributions are well known to the general researcher and are in use in a wide variety of ways. Other useful distributions are less understood and are not in common use. The book describes when and how to apply each of the distributions in research studies, with a goal to identify the distribution that best applies to the study. The distributions are for continuous, discrete, and bivariate random variables. In most studies, the parameter values are not known a priori, and sample data is needed to estimate parameter values. In other scenarios, no sample data is available, and the researcher seeks some insight that allows the estimate of the parameter values to be gained. This handbook of statistical distributions provides a working knowledge of applying common and uncommon statistical distributions in research studies. These nineteen distributions are: continuous uniform, exponential, Erlang, gamma, beta, Weibull, normal, lognormal, left-truncated normal, right-truncated normal, triangular, discrete uniform, binomial, geometric, Pascal, Poisson, hyper-geometric, bivariate normal, and bivariate lognormal. Some are from continuous data and others are from discrete and bivariate data. This group of statistical distributions has ample application to studies in statistics and probability and practical use in real situations. Additionally, this book explains computing the cumulative probability of each distribution and estimating the parameter values either with sample data or without sample data. Examples are provided throughout to guide the reader. Accuracy in choosing and applying statistical distributions is particularly imperative for anyone who does statistical and probability analysis, including management scientists, market researchers, engineers, mathematicians, physicists, chemists, economists, social science researchers, and students in many disciplines Statistics Probabilities Commercial statistics Distribution (Probability theory) Erscheint auch als Online-Ausgabe 978-3-319-65112-5 3-319-65112-9 |
spellingShingle | Thomopoulos, Nick T. 1931- Statistical distributions applications and parameter estimates |
title | Statistical distributions applications and parameter estimates |
title_auth | Statistical distributions applications and parameter estimates |
title_exact_search | Statistical distributions applications and parameter estimates |
title_full | Statistical distributions applications and parameter estimates Nick T. Thomopoulos |
title_fullStr | Statistical distributions applications and parameter estimates Nick T. Thomopoulos |
title_full_unstemmed | Statistical distributions applications and parameter estimates Nick T. Thomopoulos |
title_short | Statistical distributions |
title_sort | statistical distributions applications and parameter estimates |
title_sub | applications and parameter estimates |
work_keys_str_mv | AT thomopoulosnickt statisticaldistributionsapplicationsandparameterestimates |