Quantitative understanding of biosystems: an introduction to biophysics
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press, Taylor & Francis Group
[2019]
|
Ausgabe: | Second edition |
Schriftenreihe: | Foundations of biochemistry and biophysics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xx, 608 Seiten Illustrationen, Diagramme |
ISBN: | 9781138633414 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV045932619 | ||
003 | DE-604 | ||
005 | 20190709 | ||
007 | t | ||
008 | 190612s2019 xxua||| |||| 00||| eng d | ||
020 | |a 9781138633414 |c hardback |9 978-1-138-63341-4 | ||
035 | |a (OCoLC)1105155763 | ||
035 | |a (DE-599)KXP1664053271 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-19 |a DE-11 | ||
050 | 0 | |a QH505 | |
082 | 0 | |a 612/.014 | |
084 | |a WD 2000 |0 (DE-625)148161: |2 rvk | ||
100 | 1 | |a Nordlund, Thomas M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quantitative understanding of biosystems |b an introduction to biophysics |c Thomas M. Nordlund, Peter M. Hoffmann |
250 | |a Second edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press, Taylor & Francis Group |c [2019] | |
300 | |a xx, 608 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Foundations of biochemistry and biophysics | |
500 | |a Includes bibliographical references and index | ||
650 | 0 | 7 | |a Biophysik |0 (DE-588)4006891-2 |2 gnd |9 rswk-swf |
653 | 0 | |a Biophysics / Textbooks | |
653 | 0 | |a Molecular biology / Textbooks | |
689 | 0 | 0 | |a Biophysik |0 (DE-588)4006891-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Hoffmann, Peter M. |e Verfasser |0 (DE-588)17367190X |4 aut | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031315022&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-031315022 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804180122242121728 |
---|---|
adam_text | Contents
Preface xvjj
Acknowledgments XXj
Authors xxjjj
PART I Introduction, Approach, and Tools
1 Introduction to a New World 3
1 1 Biophysics and Genetic Engineering 3
1 2 Biological and Nonliving Worlds Contrasted 4
1 3 Hierarchical Structure and Function 9
1 4 Some Important Quantities to Get Started 12
1 5 Biophysics and Biochemistry Operate in Water (Water 1) 14
1 6 Important or “Hot Issues in Biophysics, or How to Be Out-of-Date Quickly 16
1 7 Read Appendix A 17
1 8 Problem-Solving 18
References 21
2 How (Most) Physicists Approach Biophysics 23
2 1 Dealing with Nonspherical Cows: Drive for Simplicity 23
2 2 Two Approaches to Biosystems 24
221 Approach 1: Use Principles to Explain and Predict the Phenomena 24
222 Approach 2: Describe the System as Completely as Possible and Infer the
Organizing Principles 24
2 3 Comparison of “Physics and “Biology” Approaches to Organism 1 2e 25
231 Approach 1 25
232 Approach 2 26
2 4 Memorization: Its Advantages and Dangers 26
2 5 Problem-Solving 27
References 31
3 Math Tools: First Pass 33
3 1 What Math Do We Need? 33
3 2 Notation: Mathematics versus Physics Notations 33
321 Derivatives and Differentials 33
3 3 Approximations 33
331 Complexity: Approximations That Eliminate the “Butterfly Effect 33
332 Experimental: Ignoring Chemical Components in the Biosystem 34
333 Mathematical: Approximations to Biological Structure and Dynamics 35
3331 Expansions: Taylor Series 35
3332 Example 1: Oscillation in an Asymmetric Potential Well 35
3333 Example 2: Small Angles 38
3334 Example 3: Exponentials 38
Vi Contents
334 Approximations in Differential Equations
3341 Small and Large: Compared to What
3342 Short Time
3343 Long Time
3 4 Vectors
3 5 Two- and Three-Dimensional Geometry
351 Rectangular Coordinates: r, or (x, y, z)
352 Cylindrical Coordinates
353 Spherical Coordinates
3 6 Calculus
361 Drawing Diagrams That Help You Do the Math
362 Differentials in Two and Three Dimensions
363 Derivatives and Partial Derivatives
364 Change of Variables and Jacobians
3 7 Differential Equations
371 First Order, Linear
372 First Order, Nonlinear (but Not the Most General Nonlinear)
373 Second Order, Linear
374 Boundary (Spatial) and Initial (Time) Conditions
375 Sketching and Guessing Solutions
376 Steady State and Equilibrium
3 8 Distributions
381 Large Populations and Single Particles
382 Intrinsic versus Measured Probabilities
383 Discrete Distributions: Averages and Deviations
384 Continuous Distributions
385 Distribution Functions
3851
3852
3853
3854
3855
3856
39 Problem-Solving
References
Uniform
Binomial
Gaussian
Poisson
Maxwell-Boltzmann Velocity Distribution
From Velocity, to Speed, to Momentum, to Kinetic Energy Distributions
39
39
40
40
41
41
42
42
43
43
44
45
46
47
48
48
49
50
51
51
52
53
53
54
54
55
56
56
56
57
58
59
59
59
63
PART II Structure and Function
Water 67
4 1 Introduction
4 2 Structure 67
421 Molecular Structure 67
422 Water: Liquid and Solid 68
4221 Solid Water (Ice) 68
4222 Liquid Water Experiments 69
4223 Fluctuating Structure 69
71
Contents vii
4 3 Unusual Physical Properties 71
431 Macroscopic Flow Properties: Viscosity 71
432 Heat Storage: Specific Heat c 72
433 Heat Conduction: Thermal Conductivity 72
434 Phase Changes of Water 74
435 Water Has a High Surface Tension 75
436 Surface Tension: Viscosity Ratio 76
437 Dielectric Properties 76
4 4 Summary of Important Physical Properties 78
4 5 Bulk versus Local Structures 78
451 Cytoskeleton Fills and Organizes the Interior of Eukaryotic Cells 79
452 Bound Water Molecules 80
4 6 Diffusion and Chemical Reactions in Water 82
4 7 Solutes and the Solvent Power of Water 82
471 Solubility in Water 83
472 Water Ionization 83
4 8 Points to Remember 84
4 9 Problem-Solving 84
References 88
5 Structures: From 0 1 to 10 nm and Larger 91
5 1 Software to Display and Analyze Biological Structures 92
5 2 Solvents 94
5 3 Small Molecules 95
531 Important Ions 95
5311 Counterions 95
5312 Ionic Equilibrium 97
532 Carriers of Energy and Genetic Information: Nucleotides 97
533 Carriers of Energy and Electron-Donating Capability: NADH and NADPH 98
5 4 Medium-Sized Molecules: Components of Large Biomolecules 100
541 Ringlike Structures and Delocalized Electrons: Prosthetic Groups and Catalysis 100
5411 Heme 100
5412 Characteristics Common to Heme and Chlorophyll 101
5413 Chlorophyll 102
542 Multipurpose Molecules: Building Blocks, Energy Carriers, Control/Signaling
Molecules 102
5421 Amino Acids 102
5422 Nucleotides 104
5423 Sugars 105
5 5 Forces and Free Energies 106
5 6 Biopolymers 108
561 Proteins 108
5611 Polypeptides 110
5612 Structural Rules and Protein Folding 111
5613 Alpha and Other Helices 115
5614 Interactions that Govern Protein Structure 116
5615 ß Sheet 122
562 Hints of Function: Structural vs Catalytic Proteins
5621 Fibrous Proteins
5622 Globular Proteins and Active Sites
563 Polynucleotides
5631 DNA: Deoxyribonucleic Acids
5632 RNA: Ribonucleic Acids and Folding
5633 What Is a Random Coil”?
564 Carbohydrates and Saccharides
565 Membranes
5 7 Macromolecules: When Does a Molecule Become a Macroscopic Object?
571 Visible to the Naked Eye?
572 Optical Resolution
573 Quantum versus Classical Behavior
574 Surface Atoms/Bulk Atoms
575 Energies Compared to kBT
576 Gravitational Energy
577 Statistical Measures of Large” Numbers of Particles
5 8 Points to Remember
5 9 Problem-Solving
References
First Pass at Supramolecular Structures: Assemblies of Biomolecules
6 1 Measuring Properties of Three-Dimensional Aggregates
611 Sedimentation Coefficient
612 Separating Subunits of Small Aggregates: Chromatography
6121 Affinity Chromatography
6122 Competitive Binding
6 2 Small Aggregates
621 Protein Aggregates
622 Hemoglobin and Light Absorption
623 Aggregated Membrane Channel Protein
6 3 Large Aggregates
631 Large Protein Aggregates: Vaults
632 Ribosome
633 Saccharide Aggregates
6331 Oligosaccharides
6332 Polysaccharides
6333 Structural Polysaccharides
634 Composite Materials
6 4 Two-Dimensional Aggregates: Membranes
641 Two-Dimensional Membranes Result from One-Dimensional Properties of Lipid
Molecules
642 Lipid Vesicles, Liposomes, and Flat Bilayers
6421 Energy and Membrane Change of Area
6422 Energy and Membrane Curvature
643 Muitilamellar Membrane Structures
6431 Energetics of Membrane Stacking
6432 Exclusion Zones and Entropy
644 Bilayers Are Dynamic
6441 Lateral Motion in Membranes
123
123
125
129
130
135
139
140
141
141
141
142
142
143
143
144
144
145
145
152
157
157
158
158
160
163
164
164
165
166
168
168
168
169
169
170
170
170
173
174
174
175
175
176
177
178
179
179
Contents ix
6442 Vertical Motion of Lipids 179
6443 Lipid Flip-Flop Rates in Membranes 181
645 Membrane Fluidity 181
646 Membranes Must Have Controllable Holes in Them 182
647 Charge Movement Across Membranes 183
6 5 Points to Remember 187
6 6 Problem-Solving 187
References 192
7 Putting a Cell Together: Physical Sketch 195
7 1 Minimal, Prokaryotic, and Eukaryotic Cells 195
711 Minimal Cell 196
712 Prokaryotes and Eukaryotes: Differences 198
713 Prokaryotes: Parts 200
7131 Prokaryotic Cell Structure 201
7132 Cyanobacteria (Blue-Green Algae) and Other Photosynthetic Bacteria 202
7133 Halobacteria 204
714 Eukaryotes: Parts 205
7 2 Physiology: Selective Overview 206
721 Energy Transduction: Mitochondrion 206
722 Energy Generation: Eukaryotic Photosynthetic Cells and the Chloroplast 207
723 Endoplasmic Reticula and the Golgi Apparatus 208
7 3 Reproduction, DNA, and the Cell Nucleus 209
731 Nuclear Envelope and the Nuclear Pore Complex 209
732 Nucleolus 210
733 Cell Division: Some Major Structural Changes Are Needed 210
7 4 Sensors and Recognition: Responding to the Outside World without Eyes 210
741 Sensing through Diffusion 211
742 Purposeful and Random Movement: Preliminary Comments 211
743 Cell-Cell Recognition: Example 212
744 The Bacterial Brain” Has No Neurons 213
7 5 Points to Remember 214
7 6 Problem-Solving 215
References 220
PART III Biological Activity: Quantum Microworid
8 Quantum Primer 225
8 1 Quantum Glossary 226
811 Quantum, Quantum Behavior, Quantum Mechanics, and Wave Mechanics 226
8 2 Schrödinger Equation and Other Tools of Quantum Mechanics 227
821 Time-Dependence: Plane Waves 227
822 Uncertainty Principle and Sketched Wave Functions 231
8221 Confined Particles Want to Expand 231
8222 Sketched Wave Functions and de Broglie Wavelength 231
8223 Quantum Mechanics Limits Exactness 233
823 Stationary States: Time-Independent Wave Functions 233
824 Energy-Level Diagrams 235
825 Normalization Constants 235
826 Average Values 236
8 3 Pauli Exclusion Principle 238
8 4 From Atoms to Molecules 240
8 5 Collisions of Atoms and Molecules 241
8 6 Classical vs Quantum: Is a 1-mm-Long Molecule of DNA a Quantum Object? 242
8 7 Points to Remember 242
8 8 Problem-Solving 243
References 245
9 Light, Life, and Measurement 247
9 1 Light: Our Energy Source 247
9 2 Crucial Differences between One 5-eV and Two 2 5-eV Photons 249
9 3 Measuring the Properties of Photons 249
931 Waves versus Particles: How Many Photons Are in a Wave? 250
932 Photon Momentum 252
933 Photon Angular Momentum 252
9 4 Scattering and Refraction 253
941 Rayleigh and Mie Scattering 253
942 Refraction: Interfaces and Whispering-Gallery Modes 255
943 Optical Forces: Laser Tweezers 255
9431 Trapping of Cells 258
9432 Measurement of Single-Molecule Interactions 259
9 5 Absorption Spectra 259
951 Energy-Level Diagram 260
952 Biomolecular Absorption Spectra Are Broad 260
953 Spectrum as a Digital Distribution Function 261
954 Absorbance and Absorption (Extinction) Coefficient 261
955 Proteins That Unexpectedly Absorb Light 263
9 6 Emission Spectra 264
961 Stokes Shift 265
962 Time Scales and Excited-State Kinetics 265
963 Non- or Multiexponential Decay and Solvent Relaxation 266
964 Fluorescence Quantum Yield 266
965 Nanoparticles: New Fluorescence Labels for Biological Applications 267
9 7 Einstein Relations between Absorption and Emission of Atoms (Graduate Section) 271
9 8 Intersystem Crossing: Singlets (S = 0) To Triplets (S = 1) 272
9 9 Energy Transfer (FRET) 272
9 10 Points to Remember 274
9 11 Problem-Solving 278
ORCl
References ^
0 Photosynthesis 283
10 1 Global Numbers 288
10 2 Overall Process 284
10 2 1 Finding Cellular and Subcellular Structures 285
10 2 2 Light and Dark Reactions: Products and Yields 288
10 2 3 Time Sequence of Photosynthesis 287
Contents xi
10 2 4 “Z Scheme” 288
10 2 5 Absorption Spectra of Photosynthetic Pigments 288
10 3 Structural Organization of Photosynthetic Units 292
10 4 Light-Harvesting (Antenna) Proteins: Arrays of Absorbers 295
10 4 1 Green Plant Light-Harvesting Complexes 296
10 4 2 From Green Plant to Cyanobacterial to Purple-Bacterial Light-Harvesting Systems 296
10 4 3 Quantum Efficiency of Electron Transfer 297
10 4 4 Phycocyanin Antennae 297
10 4 5 Purple Bacterial Photosystem 297
10 4 6 Exciton States 300
10 4 7 Hierarchy and Timing of Energy Transfer 302
10 5 Reaction Centers and Charge Separation: Purple Bacteria and Cyanobacteria 303
10 6 Artificial Models and Nonpolluting Energy Production 306
10 7 Points to Remember 307
10 8 Problem-Solving 307
References 312
11 Direct Ultraviolet Effects on Biological Systems 317
11 1 Types and Sources of UV Light 318
11 1 1 Extreme or Vacuum UV: 4-200 nm 318
11 1 2 Far UV: 200-300 nm 320
11 1 3 Near UV: 300-400 nm 320
11 2 Divisions of the UV for Health Purposes: UV-A, UV-B, and UV-C 320
11 3 UV Damage to Organisms: “Action Spectra” 321
11 4 Wavelength-Dependent Photochemical Yields and Protein Damage 323
11 5 UV Damage to DNA 325
11 5 1 Molecular Orbitals of DNA Bases 327
11 5 2 UV Excitations and Spin 328
11 5 3 DNA Damage Products 328
11 5 4 Mutagenesis and Carcinogenesis (Brief!) 328
11 5 5 Photon Damage and Photon-Assisted DNA Repair 329
11 5 6 Photolyases: Thymine Dimer Repair via Collaboration of an Enzyme and a Photon 331
11 6 Optical Properties of the Skin 332
11 6 1 Structure of the Skin 332
11 6 2 Light Penetration into Skin 333
11 621 Wavelength Dependence 333
11 622 Random Walk of Light in Tissue 335
11 7 Sunscreens 337
11 7 1 Absorption Spectra 338
11 7 2 Sun Protection Factor 338
11 7 3 Excited States of Sunscreens 339
11 731 Getting Rid of Absorbed UV Energy 339
11 732 High Absorption without a High Radiative Rate 339
11 733 ^2 and Other Radicals Produced from Sunscreen Excited States 340
11 734 Padimate 0 Case 340
11 7 4 Beneficial Effects of UV 341
11 8 Points to Remember 341
11 9 Problem-Solving 341
References 345
PART IV Biological Activity: (Classical) Microworld
12 Classical Biodynamics and Biomechanics 351
12 1 Conservation Laws, Newton’s Laws, Forces, and Torques 351
12 2 Friction: Familiar and Less Familiar Examples of Motion 353
12 2 1 Surface Friction 353
12 2 2 Air Friction (High Reynolds Number) 354
12 2 3 Liquid Friction (Stokes, Low Reynolds Number) 355
12 3 Gravitational Forces 356
12 4 Volume Changes and Compressibility 357
12 5 Stress and Strain 358
12 5 1 Shear Stress 358
12 6 Force of Friction, Dissipation, Inertia, and Disorder 360
12 6 1 Viscosity, Scaling Exponent, and Friction 361
12 6 2 Scaling Exponent 361
12 6 3 Object Shape and Frictional Loss 362
12 6 4 Asymmetry of Frictional Force 363
12 6 5 Note on Cilia and Flagella 363
12 7 Fluids and Turbulence 364
12 7 1 Critical Force 364
12 7 2 Viscous Flow through Tubes 365
12 7 3 Motor Design and the Reynolds Number 366
12 7 4 Viscosity Variations: Temperature and Dissolved Materials 367
12 7 5 Dissolved Solutes Change the Viscosity 367
12 7 6 Bacterial Foraging: Escaping Low-21 and the Peclet Number 367
12 7 7 Concluding Thoughts 368
12 8 Points to Remember 369
12 9 Problem-Solving 369
References 373
13 Random Walks, Diffusion, and Polymer Conformation 375
13 1 Review of Kinetic Theory of Gases: Implications for Biomolecular Averaging 375
13 2 One-Dimensional Random Walk: Probabilities and Distributions 377
13 2 1 Gaussian Distribution 381
13 2 2 Attempt Frequencies and Probabilities 333
13 3 Spreadsheet Model for a One-Dimensional Random Walk 383
13 3 1 Stepper Motion with More Possible Steps 386
13 3 2 First-Transit Time 387
13 3 3 Average Movement of N Steppers 387
13 3 4 Casino of Real Life 388
13 4 Three-Dimensional Random Walk 388
13 5 Diffusion in the Bulk 33®
13 5 1 Diffusion Equation 338
13 5 2 Diffusion from an Abrupt Front (Graduate Section) 392
13 5 3 Three-Dimensional Diffusion from a Point 393
13 5 4 Radially Symmetric, Steady-State Solutions 398
13 5 5 Diffusion Constant: Stokes and Einstein 398
13 5 6 Reminder: Cell Interiors Are Usually Not Bulk” 397
13 6 Reprise of Photosynthetic Light Harvesting 398
Contents xiii
13 7 Biopolymers—Random Reprise 400
13 7 1 Average End-to-End Distance 400
13 7 2 Persistence Length, Bending, and Dynamics 401
13 721 Dynamics of Movement 402
13 722 Elastic Forces 402
13 8 Points to Remember 403
13 9 Problem-Solving 403
References 408
14 Statistical Physics and Thermodynamics Primer 411
14 1 Important Quantities: Temperature, Pressure, Density, and Number 412
14 2 Statistical Mechanical View and Distributions 413
14 2 1 Boltzmann Distribution: Discrete Energies 415
14 2 2 Boltzmann Distribution: Continuous Energies 417
14 2 3 Boltzmann, Fermi-Dirac, and Bose-Einstein Statistics 417
14 3 Equipartition of Energy 418
14 4 “Internal” Energy: Kinetic (K) and Potential (U) 418
14 5 Fleat, Internal Energy, Work, and Enthalpy 420
14 6 Conservative and Nonconservative Forces: DNA Example 421
14 6 1 Cooperativity 423
14 7 Ideal Gas Law 423
14 8 Entropy: Gases and Polymers 426
14 8 1 Persistence Length and Entropy 429
14 8 2 Variable Persistence Length of DNA 429
14 8 3 Entropy, Knots, and Chain Stiffness 432
14 8 4 Topoisomerases I, II, Equilibrium, and Free Energy 434
14 8 5 Knots, Topology, and Equilibrium 436
14 9 Free Energy (Gibbs) 436
14 9 1 Free Energy Differences Govern Reactions 436
14 9 2 Standard Free Energies: Chemical Potentials, AG° and AG0 438
14 9 3 ATP: Enthalpy and Free Energy of Hydrolysis 439
14 9 4 Coupling of ATP Hydrolysis to Other Reactions 439
14 10 Energy Diagrams 440
14 11 Boltzmann Distribution If Numbers Vary: Gibbs Distribution 441
14 12 Equilibrium Constants in Ideal, Uniform Solutions 442
14 13 Free Energy: Enthalpy, Entropy, Mixing, Gradients, Potential, and ATP 443
14 13 1 Mixing Entropy 443
14 13 2 Membrane Gradients 444
14 13 3 Separation of Charge 444
14 13 4 Membrane Potentials and Work 445
14 13 5 ATP Free Energy (Again) 446
14 14 Points to Remember 446
14 15 Problem-Solving 447
References 451
15 Reactions: Physical View 455
15 1 Energy, Entropy, and Free Energy Diagrams 455
15 1 1 Equilibrium 455
15 111 Macromolecule Conformational Changes: Denaturation 458
xiv Contents
15 112 Missing Structural Detail in Early Biochemical Reaction Data 460
15 113 Rate-Determining Step 460
15 1 2 Kinetics 461
15 121 Enzymes and Reaction Kinetics: First Pass 462
15 2 Rate Theory I: Activation-Energy Model 463
15 3 Diffusion-Controlled Rates (Bimolecular) 465
15 3 1 Diffusion-Limited Reaction Rate Theory 465
15 4 Effects of Temperature on Rate Constants 468
15 4 1 Temperature Dependence of Classical “Over-the-Barrier” Rates 468
15 4 2 Measurement Biases 469
15 4 3 Compensation Effect 470
15 5 Quantum Tunneling 470
15 5 1 02 and CO Binding to Myoglobin: Activated Tunneling and Structural
and Energy Distributions 472
15 5 2 Reminder: Mathematical Form of a Straight Line on a Log-Log Plot 474
15 5 3 Proton Tunneling 475
15 6A^ B: Unimolecular Reactions 478
15 7A+BC Binding Reactions: Free-Solution Reactions 479
15 8 Complex Reactions: Rate-Determining Steps and Michaelis-Menten Analysis 481
15 8 1 Michaelis-Menten Models of Enzyme-Catalyzed Reactions 482
15 8 2 Michaelis-Menten Summary 484
15 8 3 Control of Enzymatic Reactions: Feedback and Inhibition 484
15 9 Driving Forces 485
15 10 Reversibility and Detailed Balance 485
15 11 Single-Molecule Behavior 487
15 11 1 Strange Kinetics”: Biomolecular Movement in Living Cells Is Sometimes Slower 488
15 11 2 Fluorescence Spectroscopy of Single Molecules 490
15 12 Points to Remember 493
15 13 Problem-Solving 493
References 498
16 Molecular Machines: Introduction 501
16 1 Basic Considerations for Motors 502
16 1 1 Random Walk 502
16 111 Asymmetric Steppers 503
16 112 Thermal Ratchets 503
16 113 Coupling 505
16 114 Directionality 506
16 115 Flagella and Direction 507
16 116 Step Size, Step Time, and Rate of Motion 508
16 117 Detachment and Processivity 509
16 1 2 Friction and Dissipation 509
16 121 Reynolds Number and Microscopic Motion 510
16 122 Story of the Eggshell 510
16 123 Catching a Runaway 510
16 1 3 Michaelis-Menten Enzyme Analysis and Molecular Motors 511
16 2 DNA-Manipulating Motors 513
16 2 1 Manipulating DNA 513
16 211 EcoRI Endonuclease and DNA Cleavage 515
16 212 “Free Energy Machines? 516
Contents XV
16 213 Biomolecular Search 516
16 214 Entropie Force of DNA Stretching 516
16 215 DNA Bending 518
16 216 Lac Repressor Search for Its DNA Binding Site 518
16 217 CAP and the DNA Bend 518
16 2 2 Rotary Motor That Bends DNA: Bacteriophage j)29 Portal Motor 519
16 2 3 Direct Measurement of DNA Twist, Writhe, and Torque 521
16 3 Points to Remember 522
16 4 Problem-Solving 524
References 528
17 Assembly 531
17 1 Overview of Assembly Issues 532
17 1 1 Protein Folding 533
17 1 2 Chaperonins: Eukaryotic Chaperonin TRiC 533
17 2 Kinetics and Equilibrium 534
17 3 Restricted Space for Assembly 536
17 4 Entropie Drive: Ordered Structures Can Be Driven by Random Processes 537
17 4 1 Energy Landscape and Local Minima 537
17 4 2 Correlations (Cooperativity) 538
17 4 3 Fractal Structures 539
17 4 4 Assembly by Osmotic Pressure 540
17 4 5 Commercial Application: Entropie Forces for DNA Purification 541
17 4 6 Size Distributions 542
17 4 7 Summary of Random Assembly (Aggregation, No Chaperonins or
Assembly Apparatus) 543
17 5 Nucleosomes and Nucleosome-Like Structures 543
17 5 1 Nucleosomes Are Not Static 545
17 511 Charge Switching 545
17 512 Nucleosome Sliding 545
17 5 2 Artificial Nucleosome-Like Structures 545
17 6 Imaging the Assembly of Nanoparticles 548
17 7 Points to Remember 551
17 8 Problem-Solving 551
References 555
18 Preparation for Experimental Biophysics 559
18 1 What Do You Want to Find Out, What Tools Might You Need, and Where Might
You Find These Tools? 561
18 1 1 Searching Scientific Meeting Web Sites for Experimental Methods 561
18 111 Explore the Meeting 562
18 1 2 Imaging: Searching a Biological Institute Website 564
18 2 Tools Already Described in the Book 569
18 3 The Role(s) of a Computer in Experimental Biophysics 570
18 4 The Centrality of Structure, Motion, and Imaging 572
18 5 Points to Remember 573
18 6 Problem-Solving 574
References ^77
XVi Contents
19 Atomic Force Microscopy 579
19 1 A Brief History of Scanning Probe Microscopy 579
19 2 Working Principles of AFM 580
19 2 1 The Feedback Loop 580
19 2 2 The Cantilever 581
19 2 3 The Deflection Measurement System 583
19 3 Measurement Techniques 584
19 3 1 Mechanics of AFM Measurements 584
19 3 2 Imaging Modes 586
19 3 3 Imaging Channels 586
19 3 4 Force-Distance Measurements 587
19 341 Types of Force-Distance Experiments 588
19 342 Indentation Measurements and Contact Mechanics 588
19 343 Adhesion Measurements 591
19 4 Types of Forces 591
19 4 1 Chemical Bonding 591
19 4 2 Van der Waals Forces 592
19 4 3 Electrostatic Forces 592
19 4 4 Double-Layer Forces 593
19 4 5 Steric Forces 593
19 4 6 Capillary Forces 593
19 4 7 Hydrophobic Forces 593
19 4 8 Hydration or Solvation Forces 594
19 5 Biological Applications 594
19 5 1 Cell Biology 594
19 511 Cell Imaging 594
19 512 Bacteria and Viruses 595
19 513 Cell Mechanics and Mechanobiology 596
19 514 Mechanical Manipulation 597
19 5 2 Biomolecular Biology 597
19 521 Imaging of Biomolecules 597
19 522 Single-Molecule Force Measurements 598
19 523 Recognition and Localization Microscopy 598
19 5 3 Tissues 5gg
19 5 4 Ultrafast AFM 5gg
19 5 5 Other Related Techniques and Future Developments 600
19 6 Problem-Solving 60o
References gQ2
|
any_adam_object | 1 |
author | Nordlund, Thomas M. Hoffmann, Peter M. |
author_GND | (DE-588)17367190X |
author_facet | Nordlund, Thomas M. Hoffmann, Peter M. |
author_role | aut aut |
author_sort | Nordlund, Thomas M. |
author_variant | t m n tm tmn p m h pm pmh |
building | Verbundindex |
bvnumber | BV045932619 |
callnumber-first | Q - Science |
callnumber-label | QH505 |
callnumber-raw | QH505 |
callnumber-search | QH505 |
callnumber-sort | QH 3505 |
callnumber-subject | QH - Natural History and Biology |
classification_rvk | WD 2000 |
ctrlnum | (OCoLC)1105155763 (DE-599)KXP1664053271 |
dewey-full | 612/.014 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 612 - Human physiology |
dewey-raw | 612/.014 |
dewey-search | 612/.014 |
dewey-sort | 3612 214 |
dewey-tens | 610 - Medicine and health |
discipline | Biologie Medizin |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01745nam a2200433 c 4500</leader><controlfield tag="001">BV045932619</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190709 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">190612s2019 xxua||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781138633414</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-138-63341-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1105155763</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1664053271</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH505</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">612/.014</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 2000</subfield><subfield code="0">(DE-625)148161:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nordlund, Thomas M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantitative understanding of biosystems</subfield><subfield code="b">an introduction to biophysics</subfield><subfield code="c">Thomas M. Nordlund, Peter M. Hoffmann</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press, Taylor & Francis Group</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xx, 608 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Foundations of biochemistry and biophysics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biophysik</subfield><subfield code="0">(DE-588)4006891-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biophysics / Textbooks</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Molecular biology / Textbooks</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biophysik</subfield><subfield code="0">(DE-588)4006891-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hoffmann, Peter M.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)17367190X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031315022&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031315022</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV045932619 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:30:44Z |
institution | BVB |
isbn | 9781138633414 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031315022 |
oclc_num | 1105155763 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-11 |
owner_facet | DE-19 DE-BY-UBM DE-11 |
physical | xx, 608 Seiten Illustrationen, Diagramme |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | CRC Press, Taylor & Francis Group |
record_format | marc |
series2 | Foundations of biochemistry and biophysics |
spelling | Nordlund, Thomas M. Verfasser aut Quantitative understanding of biosystems an introduction to biophysics Thomas M. Nordlund, Peter M. Hoffmann Second edition Boca Raton ; London ; New York CRC Press, Taylor & Francis Group [2019] xx, 608 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Foundations of biochemistry and biophysics Includes bibliographical references and index Biophysik (DE-588)4006891-2 gnd rswk-swf Biophysics / Textbooks Molecular biology / Textbooks Biophysik (DE-588)4006891-2 s 1\p DE-604 Hoffmann, Peter M. Verfasser (DE-588)17367190X aut HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031315022&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Nordlund, Thomas M. Hoffmann, Peter M. Quantitative understanding of biosystems an introduction to biophysics Biophysik (DE-588)4006891-2 gnd |
subject_GND | (DE-588)4006891-2 |
title | Quantitative understanding of biosystems an introduction to biophysics |
title_auth | Quantitative understanding of biosystems an introduction to biophysics |
title_exact_search | Quantitative understanding of biosystems an introduction to biophysics |
title_full | Quantitative understanding of biosystems an introduction to biophysics Thomas M. Nordlund, Peter M. Hoffmann |
title_fullStr | Quantitative understanding of biosystems an introduction to biophysics Thomas M. Nordlund, Peter M. Hoffmann |
title_full_unstemmed | Quantitative understanding of biosystems an introduction to biophysics Thomas M. Nordlund, Peter M. Hoffmann |
title_short | Quantitative understanding of biosystems |
title_sort | quantitative understanding of biosystems an introduction to biophysics |
title_sub | an introduction to biophysics |
topic | Biophysik (DE-588)4006891-2 gnd |
topic_facet | Biophysik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031315022&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT nordlundthomasm quantitativeunderstandingofbiosystemsanintroductiontobiophysics AT hoffmannpeterm quantitativeunderstandingofbiosystemsanintroductiontobiophysics |