Single Digits: In Praise of Small Numbers
The numbers one through nine have remarkable mathematical properties and characteristics. For instance, why do eight perfect card shuffles leave a standard deck of cards unchanged? Are there really "six degrees of separation" between all pairs of people? And how can any map need only four...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
[2015]
|
Schlagworte: | |
Online-Zugang: | FAW01 FHA01 FKE01 FLA01 UPA01 FAB01 FCO01 Volltext |
Zusammenfassung: | The numbers one through nine have remarkable mathematical properties and characteristics. For instance, why do eight perfect card shuffles leave a standard deck of cards unchanged? Are there really "six degrees of separation" between all pairs of people? And how can any map need only four colors to ensure that no regions of the same color touch? In Single Digits, Marc Chamberland takes readers on a fascinating exploration of small numbers, from one to nine, looking at their history, applications, and connections to various areas of mathematics, including number theory, geometry, chaos theory, numerical analysis, and mathematical physics.Each chapter focuses on a single digit, beginning with easy concepts that become more advanced as the chapter progresses. Chamberland covers vast numerical territory, such as illustrating the ways that the number three connects to chaos theory, an unsolved problem involving Egyptian fractions, the number of guards needed to protect an art gallery, and problematic election results. He considers the role of the number seven in matrix multiplication, the Transylvania lottery, synchronizing signals, and hearing the shape of a drum. Throughout, he introduces readers to an array of puzzles, such as perfect squares, the four hats problem, Strassen multiplication, Catalan’s conjecture, and so much more. The book’s short sections can be read independently and digested in bite-sized chunks—especially good for learning about the Ham Sandwich Theorem and the Pizza Theorem. Appealing to high school and college students, professional mathematicians, and those mesmerized by patterns, this book shows that single digits offer a plethora of possibilities that readers can count on |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed September 10 2015) |
Beschreibung: | 240 pages) illustrations |
ISBN: | 9781400865697 |
DOI: | 10.1515/9781400865697 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045928621 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 190612s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781400865697 |9 978-1-4008-6569-7 | ||
024 | 7 | |a 10.1515/9781400865697 |2 doi | |
035 | |a (ZDB-23-DGG)9781400865697 | ||
035 | |a (OCoLC)909908463 | ||
035 | |a (OCoLC)984644222 | ||
035 | |a (DE-599)BVBBV045928621 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-739 |a DE-860 |a DE-859 |a DE-Aug4 |a DE-1043 |a DE-858 | ||
082 | 0 | |a 510 |2 23 | |
100 | 1 | |a Chamberland, Marc |e Verfasser |4 aut | |
245 | 1 | 0 | |a Single Digits |b In Praise of Small Numbers |c Marc Chamberland |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c [2015] | |
264 | 4 | |c © 2015 | |
300 | |a 240 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed September 10 2015) | ||
520 | |a The numbers one through nine have remarkable mathematical properties and characteristics. For instance, why do eight perfect card shuffles leave a standard deck of cards unchanged? Are there really "six degrees of separation" between all pairs of people? And how can any map need only four colors to ensure that no regions of the same color touch? In Single Digits, Marc Chamberland takes readers on a fascinating exploration of small numbers, from one to nine, looking at their history, applications, and connections to various areas of mathematics, including number theory, geometry, chaos theory, numerical analysis, and mathematical physics.Each chapter focuses on a single digit, beginning with easy concepts that become more advanced as the chapter progresses. Chamberland covers vast numerical territory, such as illustrating the ways that the number three connects to chaos theory, an unsolved problem involving Egyptian fractions, the number of guards needed to protect an art gallery, and problematic election results. He considers the role of the number seven in matrix multiplication, the Transylvania lottery, synchronizing signals, and hearing the shape of a drum. Throughout, he introduces readers to an array of puzzles, such as perfect squares, the four hats problem, Strassen multiplication, Catalan’s conjecture, and so much more. The book’s short sections can be read independently and digested in bite-sized chunks—especially good for learning about the Ham Sandwich Theorem and the Pizza Theorem. Appealing to high school and college students, professional mathematicians, and those mesmerized by patterns, this book shows that single digits offer a plethora of possibilities that readers can count on | ||
546 | |a In English | ||
648 | 7 | |a Geschichte |2 gnd |9 rswk-swf | |
650 | 4 | |a Combinatorial analysis | |
650 | 4 | |a Mathematical analysis | |
650 | 4 | |a Mathematics, other | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Sequences (Mathematics) | |
650 | 7 | |a Mathematics / Essays |2 bisacsh | |
650 | 7 | |a Mathematics / Pre-Calculus |2 bisacsh | |
650 | 7 | |a Mathematics / Reference |2 bisacsh | |
650 | 4 | |a Mathematics |x Miscellanea | |
650 | 0 | 7 | |a Zahl |0 (DE-588)4067271-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Problem |0 (DE-588)4114530-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ziffer |0 (DE-588)4190809-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ziffer |0 (DE-588)4190809-0 |D s |
689 | 0 | 1 | |a Zahl |0 (DE-588)4067271-2 |D s |
689 | 0 | 2 | |a Mathematisches Problem |0 (DE-588)4114530-6 |D s |
689 | 0 | 3 | |a Geschichte |A z |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400865697 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031311057 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1515/9781400865697?locatt=mode:legacy |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400865697?locatt=mode:legacy |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400865697?locatt=mode:legacy |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400865697?locatt=mode:legacy |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400865697?locatt=mode:legacy |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400865697?locatt=mode:legacy |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400865697?locatt=mode:legacy |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804180114004508672 |
---|---|
any_adam_object | |
author | Chamberland, Marc |
author_facet | Chamberland, Marc |
author_role | aut |
author_sort | Chamberland, Marc |
author_variant | m c mc |
building | Verbundindex |
bvnumber | BV045928621 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9781400865697 (OCoLC)909908463 (OCoLC)984644222 (DE-599)BVBBV045928621 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400865697 |
era | Geschichte gnd |
era_facet | Geschichte |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04780nmm a2200697zc 4500</leader><controlfield tag="001">BV045928621</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190612s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400865697</subfield><subfield code="9">978-1-4008-6569-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400865697</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400865697</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)909908463</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)984644222</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045928621</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chamberland, Marc</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Single Digits</subfield><subfield code="b">In Praise of Small Numbers</subfield><subfield code="c">Marc Chamberland</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">240 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed September 10 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The numbers one through nine have remarkable mathematical properties and characteristics. For instance, why do eight perfect card shuffles leave a standard deck of cards unchanged? Are there really "six degrees of separation" between all pairs of people? And how can any map need only four colors to ensure that no regions of the same color touch? In Single Digits, Marc Chamberland takes readers on a fascinating exploration of small numbers, from one to nine, looking at their history, applications, and connections to various areas of mathematics, including number theory, geometry, chaos theory, numerical analysis, and mathematical physics.Each chapter focuses on a single digit, beginning with easy concepts that become more advanced as the chapter progresses. Chamberland covers vast numerical territory, such as illustrating the ways that the number three connects to chaos theory, an unsolved problem involving Egyptian fractions, the number of guards needed to protect an art gallery, and problematic election results. He considers the role of the number seven in matrix multiplication, the Transylvania lottery, synchronizing signals, and hearing the shape of a drum. Throughout, he introduces readers to an array of puzzles, such as perfect squares, the four hats problem, Strassen multiplication, Catalan’s conjecture, and so much more. The book’s short sections can be read independently and digested in bite-sized chunks—especially good for learning about the Ham Sandwich Theorem and the Pizza Theorem. Appealing to high school and college students, professional mathematicians, and those mesmerized by patterns, this book shows that single digits offer a plethora of possibilities that readers can count on</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, other</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sequences (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics / Essays</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics / Pre-Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics / Reference</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield><subfield code="x">Miscellanea</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahl</subfield><subfield code="0">(DE-588)4067271-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Problem</subfield><subfield code="0">(DE-588)4114530-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ziffer</subfield><subfield code="0">(DE-588)4190809-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ziffer</subfield><subfield code="0">(DE-588)4190809-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zahl</subfield><subfield code="0">(DE-588)4067271-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematisches Problem</subfield><subfield code="0">(DE-588)4114530-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Geschichte</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400865697</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031311057</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400865697?locatt=mode:legacy</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400865697?locatt=mode:legacy</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400865697?locatt=mode:legacy</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400865697?locatt=mode:legacy</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400865697?locatt=mode:legacy</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400865697?locatt=mode:legacy</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400865697?locatt=mode:legacy</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045928621 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:30:36Z |
institution | BVB |
isbn | 9781400865697 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031311057 |
oclc_num | 909908463 984644222 |
open_access_boolean | |
owner | DE-1046 DE-739 DE-860 DE-859 DE-Aug4 DE-1043 DE-858 |
owner_facet | DE-1046 DE-739 DE-860 DE-859 DE-Aug4 DE-1043 DE-858 |
physical | 240 pages) illustrations |
psigel | ZDB-23-DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FCO_PDA_DGG |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Princeton University Press |
record_format | marc |
spelling | Chamberland, Marc Verfasser aut Single Digits In Praise of Small Numbers Marc Chamberland Princeton, N.J. Princeton University Press [2015] © 2015 240 pages) illustrations txt rdacontent c rdamedia cr rdacarrier Description based on online resource; title from PDF title page (publisher's Web site, viewed September 10 2015) The numbers one through nine have remarkable mathematical properties and characteristics. For instance, why do eight perfect card shuffles leave a standard deck of cards unchanged? Are there really "six degrees of separation" between all pairs of people? And how can any map need only four colors to ensure that no regions of the same color touch? In Single Digits, Marc Chamberland takes readers on a fascinating exploration of small numbers, from one to nine, looking at their history, applications, and connections to various areas of mathematics, including number theory, geometry, chaos theory, numerical analysis, and mathematical physics.Each chapter focuses on a single digit, beginning with easy concepts that become more advanced as the chapter progresses. Chamberland covers vast numerical territory, such as illustrating the ways that the number three connects to chaos theory, an unsolved problem involving Egyptian fractions, the number of guards needed to protect an art gallery, and problematic election results. He considers the role of the number seven in matrix multiplication, the Transylvania lottery, synchronizing signals, and hearing the shape of a drum. Throughout, he introduces readers to an array of puzzles, such as perfect squares, the four hats problem, Strassen multiplication, Catalan’s conjecture, and so much more. The book’s short sections can be read independently and digested in bite-sized chunks—especially good for learning about the Ham Sandwich Theorem and the Pizza Theorem. Appealing to high school and college students, professional mathematicians, and those mesmerized by patterns, this book shows that single digits offer a plethora of possibilities that readers can count on In English Geschichte gnd rswk-swf Combinatorial analysis Mathematical analysis Mathematics, other Mathematics Mathematik Sequences (Mathematics) Mathematics / Essays bisacsh Mathematics / Pre-Calculus bisacsh Mathematics / Reference bisacsh Mathematics Miscellanea Zahl (DE-588)4067271-2 gnd rswk-swf Mathematisches Problem (DE-588)4114530-6 gnd rswk-swf Ziffer (DE-588)4190809-0 gnd rswk-swf Ziffer (DE-588)4190809-0 s Zahl (DE-588)4067271-2 s Mathematisches Problem (DE-588)4114530-6 s Geschichte z 1\p DE-604 https://doi.org/10.1515/9781400865697 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Chamberland, Marc Single Digits In Praise of Small Numbers Combinatorial analysis Mathematical analysis Mathematics, other Mathematics Mathematik Sequences (Mathematics) Mathematics / Essays bisacsh Mathematics / Pre-Calculus bisacsh Mathematics / Reference bisacsh Mathematics Miscellanea Zahl (DE-588)4067271-2 gnd Mathematisches Problem (DE-588)4114530-6 gnd Ziffer (DE-588)4190809-0 gnd |
subject_GND | (DE-588)4067271-2 (DE-588)4114530-6 (DE-588)4190809-0 |
title | Single Digits In Praise of Small Numbers |
title_auth | Single Digits In Praise of Small Numbers |
title_exact_search | Single Digits In Praise of Small Numbers |
title_full | Single Digits In Praise of Small Numbers Marc Chamberland |
title_fullStr | Single Digits In Praise of Small Numbers Marc Chamberland |
title_full_unstemmed | Single Digits In Praise of Small Numbers Marc Chamberland |
title_short | Single Digits |
title_sort | single digits in praise of small numbers |
title_sub | In Praise of Small Numbers |
topic | Combinatorial analysis Mathematical analysis Mathematics, other Mathematics Mathematik Sequences (Mathematics) Mathematics / Essays bisacsh Mathematics / Pre-Calculus bisacsh Mathematics / Reference bisacsh Mathematics Miscellanea Zahl (DE-588)4067271-2 gnd Mathematisches Problem (DE-588)4114530-6 gnd Ziffer (DE-588)4190809-0 gnd |
topic_facet | Combinatorial analysis Mathematical analysis Mathematics, other Mathematics Mathematik Sequences (Mathematics) Mathematics / Essays Mathematics / Pre-Calculus Mathematics / Reference Mathematics Miscellanea Zahl Mathematisches Problem Ziffer |
url | https://doi.org/10.1515/9781400865697 |
work_keys_str_mv | AT chamberlandmarc singledigitsinpraiseofsmallnumbers |