The Plaid model:
Outer billiards provides a toy model for planetary motion and exhibits intricate and mysterious behavior even for seemingly simple examples. It is a dynamical system in which a particle in the plane moves around the outside of a convex shape according to a scheme that is reminiscent of ordinary bill...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton ; NJ
Princeton University Press
[2019]
|
Schriftenreihe: | Annals of mathematics studies
Number 198 |
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FCO01 FHA01 FKE01 FLA01 TUM01 UPA01 Volltext |
Zusammenfassung: | Outer billiards provides a toy model for planetary motion and exhibits intricate and mysterious behavior even for seemingly simple examples. It is a dynamical system in which a particle in the plane moves around the outside of a convex shape according to a scheme that is reminiscent of ordinary billiards. The Plaid Model, which is a self-contained sequel to Richard Schwartz’s Outer Billiards on Kites, provides a combinatorial model for orbits of outer billiards on kites.Schwartz relates these orbits to such topics as polytope exchange transformations, renormalization, continued fractions, corner percolation, and the Truchet tile system. The combinatorial model, called "the plaid model," has a self-similar structure that blends geometry and elementary number theory. The results were discovered through computer experimentation and it seems that the conclusions would be extremely difficult to reach through traditional mathematics.The book includes an extensive computer program that allows readers to explore materials interactively and each theorem is accompanied by a computer demo |
Beschreibung: | 1 Online-Ressource (xi, 267 Seiten |
ISBN: | 9780691188997 |
DOI: | 10.1515/9780691188997 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV045924412 | ||
003 | DE-604 | ||
005 | 20220331 | ||
007 | cr|uuu---uuuuu | ||
008 | 190612s2019 |||| o||u| ||||||eng d | ||
020 | |a 9780691188997 |9 978-0-691-18899-7 | ||
024 | 7 | |a 10.1515/9780691188997 |2 doi | |
035 | |a (ZDB-23-DGG)9780691188997 | ||
035 | |a (OCoLC)1104890445 | ||
035 | |a (DE-599)BVBBV045924412 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-739 |a DE-860 |a DE-859 |a DE-Aug4 |a DE-1043 |a DE-91 |a DE-858 |a DE-83 | ||
082 | 0 | |a 515/.39 |2 23 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 810 |0 (DE-625)143257: |2 rvk | ||
084 | |a 37E15 |2 msc | ||
084 | |a 52A10 |2 msc | ||
084 | |a 37D50 |2 msc | ||
100 | 1 | |a Schwartz, Richard Evan |d 1966- |0 (DE-588)102219111X |4 aut | |
245 | 1 | 0 | |a The Plaid model |c Richard Evan Schwartz |
264 | 1 | |a Princeton ; NJ |b Princeton University Press |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a 1 Online-Ressource (xi, 267 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of mathematics studies |v Number 198 | |
520 | |a Outer billiards provides a toy model for planetary motion and exhibits intricate and mysterious behavior even for seemingly simple examples. It is a dynamical system in which a particle in the plane moves around the outside of a convex shape according to a scheme that is reminiscent of ordinary billiards. The Plaid Model, which is a self-contained sequel to Richard Schwartz’s Outer Billiards on Kites, provides a combinatorial model for orbits of outer billiards on kites.Schwartz relates these orbits to such topics as polytope exchange transformations, renormalization, continued fractions, corner percolation, and the Truchet tile system. The combinatorial model, called "the plaid model," has a self-similar structure that blends geometry and elementary number theory. The results were discovered through computer experimentation and it seems that the conclusions would be extremely difficult to reach through traditional mathematics.The book includes an extensive computer program that allows readers to explore materials interactively and each theorem is accompanied by a computer demo | ||
546 | |a In English | ||
650 | 7 | |a MATHEMATICS / Geometry / General |2 bisacsh | |
650 | 4 | |a Combinatorial dynamics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Number theory | |
650 | 0 | 7 | |a Dynamisches System |0 (DE-588)4013396-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Astronomie |0 (DE-588)4003311-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Astronomie |0 (DE-588)4003311-9 |D s |
689 | 0 | 1 | |a Dynamisches System |0 (DE-588)4013396-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-18137-0 |
830 | 0 | |a Annals of mathematics studies |v Number 198 |w (DE-604)BV040389493 |9 198 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9780691188997 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DMA |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031306849 | ||
966 | e | |u https://doi.org/10.1515/9780691188997?locatt=mode:legacy |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691188997?locatt=mode:legacy |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691188997?locatt=mode:legacy |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691188997?locatt=mode:legacy |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691188997?locatt=mode:legacy |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691188997?locatt=mode:legacy |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691188997?locatt=mode:legacy |l TUM01 |p ZDB-23-DMA |q TUM_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691188997?locatt=mode:legacy |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804180105623240704 |
---|---|
any_adam_object | |
author | Schwartz, Richard Evan 1966- |
author_GND | (DE-588)102219111X |
author_facet | Schwartz, Richard Evan 1966- |
author_role | aut |
author_sort | Schwartz, Richard Evan 1966- |
author_variant | r e s re res |
building | Verbundindex |
bvnumber | BV045924412 |
classification_rvk | SI 830 SK 810 |
collection | ZDB-23-DGG ZDB-23-DMA ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9780691188997 (OCoLC)1104890445 (DE-599)BVBBV045924412 |
dewey-full | 515/.39 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.39 |
dewey-search | 515/.39 |
dewey-sort | 3515 239 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9780691188997 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04043nmm a2200649 cb4500</leader><controlfield tag="001">BV045924412</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220331 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190612s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691188997</subfield><subfield code="9">978-0-691-18899-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9780691188997</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9780691188997</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1104890445</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045924412</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.39</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 810</subfield><subfield code="0">(DE-625)143257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">37E15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52A10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">37D50</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schwartz, Richard Evan</subfield><subfield code="d">1966-</subfield><subfield code="0">(DE-588)102219111X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Plaid model</subfield><subfield code="c">Richard Evan Schwartz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton ; NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 267 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">Number 198</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Outer billiards provides a toy model for planetary motion and exhibits intricate and mysterious behavior even for seemingly simple examples. It is a dynamical system in which a particle in the plane moves around the outside of a convex shape according to a scheme that is reminiscent of ordinary billiards. The Plaid Model, which is a self-contained sequel to Richard Schwartz’s Outer Billiards on Kites, provides a combinatorial model for orbits of outer billiards on kites.Schwartz relates these orbits to such topics as polytope exchange transformations, renormalization, continued fractions, corner percolation, and the Truchet tile system. The combinatorial model, called "the plaid model," has a self-similar structure that blends geometry and elementary number theory. The results were discovered through computer experimentation and it seems that the conclusions would be extremely difficult to reach through traditional mathematics.The book includes an extensive computer program that allows readers to explore materials interactively and each theorem is accompanied by a computer demo</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Astronomie</subfield><subfield code="0">(DE-588)4003311-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Astronomie</subfield><subfield code="0">(DE-588)4003311-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-18137-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">Number 198</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">198</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9780691188997</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMA</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031306849</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691188997?locatt=mode:legacy</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691188997?locatt=mode:legacy</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691188997?locatt=mode:legacy</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691188997?locatt=mode:legacy</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691188997?locatt=mode:legacy</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691188997?locatt=mode:legacy</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691188997?locatt=mode:legacy</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691188997?locatt=mode:legacy</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045924412 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:30:28Z |
institution | BVB |
isbn | 9780691188997 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031306849 |
oclc_num | 1104890445 |
open_access_boolean | |
owner | DE-1046 DE-739 DE-860 DE-859 DE-Aug4 DE-1043 DE-91 DE-BY-TUM DE-858 DE-83 |
owner_facet | DE-1046 DE-739 DE-860 DE-859 DE-Aug4 DE-1043 DE-91 DE-BY-TUM DE-858 DE-83 |
physical | 1 Online-Ressource (xi, 267 Seiten |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-PST ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of mathematics studies |
series2 | Annals of mathematics studies |
spelling | Schwartz, Richard Evan 1966- (DE-588)102219111X aut The Plaid model Richard Evan Schwartz Princeton ; NJ Princeton University Press [2019] © 2019 1 Online-Ressource (xi, 267 Seiten txt rdacontent c rdamedia cr rdacarrier Annals of mathematics studies Number 198 Outer billiards provides a toy model for planetary motion and exhibits intricate and mysterious behavior even for seemingly simple examples. It is a dynamical system in which a particle in the plane moves around the outside of a convex shape according to a scheme that is reminiscent of ordinary billiards. The Plaid Model, which is a self-contained sequel to Richard Schwartz’s Outer Billiards on Kites, provides a combinatorial model for orbits of outer billiards on kites.Schwartz relates these orbits to such topics as polytope exchange transformations, renormalization, continued fractions, corner percolation, and the Truchet tile system. The combinatorial model, called "the plaid model," has a self-similar structure that blends geometry and elementary number theory. The results were discovered through computer experimentation and it seems that the conclusions would be extremely difficult to reach through traditional mathematics.The book includes an extensive computer program that allows readers to explore materials interactively and each theorem is accompanied by a computer demo In English MATHEMATICS / Geometry / General bisacsh Combinatorial dynamics Geometry Number theory Dynamisches System (DE-588)4013396-5 gnd rswk-swf Astronomie (DE-588)4003311-9 gnd rswk-swf Astronomie (DE-588)4003311-9 s Dynamisches System (DE-588)4013396-5 s DE-604 Erscheint auch als Druck-Ausgabe 978-0-691-18137-0 Annals of mathematics studies Number 198 (DE-604)BV040389493 198 https://doi.org/10.1515/9780691188997 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Schwartz, Richard Evan 1966- The Plaid model Annals of mathematics studies MATHEMATICS / Geometry / General bisacsh Combinatorial dynamics Geometry Number theory Dynamisches System (DE-588)4013396-5 gnd Astronomie (DE-588)4003311-9 gnd |
subject_GND | (DE-588)4013396-5 (DE-588)4003311-9 |
title | The Plaid model |
title_auth | The Plaid model |
title_exact_search | The Plaid model |
title_full | The Plaid model Richard Evan Schwartz |
title_fullStr | The Plaid model Richard Evan Schwartz |
title_full_unstemmed | The Plaid model Richard Evan Schwartz |
title_short | The Plaid model |
title_sort | the plaid model |
topic | MATHEMATICS / Geometry / General bisacsh Combinatorial dynamics Geometry Number theory Dynamisches System (DE-588)4013396-5 gnd Astronomie (DE-588)4003311-9 gnd |
topic_facet | MATHEMATICS / Geometry / General Combinatorial dynamics Geometry Number theory Dynamisches System Astronomie |
url | https://doi.org/10.1515/9780691188997 |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT schwartzrichardevan theplaidmodel |