Adversarial machine learning:
"Written by leading researchers, this complete introduction brings together all the theory and tools needed for building robust machine learning in adversarial environments. Discover how machine learning systems can adapt when an adversary actively poisons data to manipulate statistical inferen...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore
Cambridge University Press
2019
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UER01 UPA01 Volltext |
Zusammenfassung: | "Written by leading researchers, this complete introduction brings together all the theory and tools needed for building robust machine learning in adversarial environments. Discover how machine learning systems can adapt when an adversary actively poisons data to manipulate statistical inference, learn the latest practical techniques for investigating system security and performing robust data analysis, and gain insight into new approaches for designing effective countermeasures against the latest wave of cyber-attacks. Privacy-preserving mechanisms and the near-optimal evasion of classifiers are discussed in detail, and in-depth case studies on email spam and network security highlight successful attacks on traditional machine learning algorithms. Providing a thorough overview of the current state of the art in the field, and possible future directions, this groundbreaking work is essential reading for researchers, practitioners and students in computer security and machine learning, and those wanting to learn about the next stage of the cybersecurity arms race"... |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource Illustrationen, Diagramme |
ISBN: | 9781107338548 |
DOI: | 10.1017/9781107338548 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV045921004 | ||
003 | DE-604 | ||
005 | 20231211 | ||
007 | cr|uuu---uuuuu | ||
008 | 190607s2019 xxk|||| o||u| ||||||eng d | ||
020 | |a 9781107338548 |c Online, PDF |9 978-1-107-33854-8 | ||
024 | 7 | |a 10.1017/9781107338548 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781107338548 | ||
035 | |a (OCoLC)1104855056 | ||
035 | |a (DE-599)BVBBV045921004 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-12 |a DE-29 |a DE-739 |a DE-92 | ||
050 | 0 | |a Q325.5 | |
082 | 0 | |a 006.3/1 |2 23 | |
084 | |a ST 277 |0 (DE-625)143643: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a DAT 708f |2 stub | ||
100 | 1 | |a Joseph, Anthony D. |e Verfasser |0 (DE-588)1188483501 |4 aut | |
245 | 1 | 0 | |a Adversarial machine learning |c Anthony D. Joseph, University of California, Berkeley; Blaine Nelson, Google; Benjamin I.P. Rubinstein, University of Melbourne; J.D. Tygar, University of California, Berkeley |
264 | 1 | |a Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore |b Cambridge University Press |c 2019 | |
300 | |a 1 Online-Ressource |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | |a "Written by leading researchers, this complete introduction brings together all the theory and tools needed for building robust machine learning in adversarial environments. Discover how machine learning systems can adapt when an adversary actively poisons data to manipulate statistical inference, learn the latest practical techniques for investigating system security and performing robust data analysis, and gain insight into new approaches for designing effective countermeasures against the latest wave of cyber-attacks. Privacy-preserving mechanisms and the near-optimal evasion of classifiers are discussed in detail, and in-depth case studies on email spam and network security highlight successful attacks on traditional machine learning algorithms. Providing a thorough overview of the current state of the art in the field, and possible future directions, this groundbreaking work is essential reading for researchers, practitioners and students in computer security and machine learning, and those wanting to learn about the next stage of the cybersecurity arms race"... | ||
650 | 4 | |a COMPUTERS / Security / General / bisacsh | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Computer security | |
650 | 4 | |a COMPUTERS / Security / General | |
650 | 0 | 7 | |a Computersicherheit |0 (DE-588)4274324-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Computersicherheit |0 (DE-588)4274324-2 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Nelson, Blaine |e Verfasser |0 (DE-588)1188485997 |4 aut | |
700 | 1 | |a Rubinstein, Benjamin I. P. |e Verfasser |0 (DE-588)1188485393 |4 aut | |
700 | 1 | |a Tygar, J.D. |e Verfasser |0 (DE-588)1188485938 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-107-04346-6 |
856 | 4 | 0 | |u http://doi.org/10.1017/9781107338548 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031303492 | ||
966 | e | |u http://doi.org/10.1017/9781107338548 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u http://doi.org/10.1017/9781107338548 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO_Kauf |x Verlag |3 Volltext | |
966 | e | |u http://doi.org/10.1017/9781107338548 |l UER01 |p ZDB-20-CBO |q UER_PDA_CBO_Kauf |x Verlag |3 Volltext | |
966 | e | |u http://doi.org/10.1017/9781107338548 |l UPA01 |p ZDB-20-CBO |q UPA_PDA_CBO_Kauf2020 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804180099456565248 |
---|---|
any_adam_object | |
author | Joseph, Anthony D. Nelson, Blaine Rubinstein, Benjamin I. P. Tygar, J.D |
author_GND | (DE-588)1188483501 (DE-588)1188485997 (DE-588)1188485393 (DE-588)1188485938 |
author_facet | Joseph, Anthony D. Nelson, Blaine Rubinstein, Benjamin I. P. Tygar, J.D |
author_role | aut aut aut aut |
author_sort | Joseph, Anthony D. |
author_variant | a d j ad adj b n bn b i p r bip bipr j t jt |
building | Verbundindex |
bvnumber | BV045921004 |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 |
callnumber-search | Q325.5 |
callnumber-sort | Q 3325.5 |
callnumber-subject | Q - General Science |
classification_rvk | ST 277 ST 300 |
classification_tum | DAT 708f |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781107338548 (OCoLC)1104855056 (DE-599)BVBBV045921004 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1017/9781107338548 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03807nmm a2200601 c 4500</leader><controlfield tag="001">BV045921004</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231211 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190607s2019 xxk|||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107338548</subfield><subfield code="c">Online, PDF</subfield><subfield code="9">978-1-107-33854-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781107338548</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781107338548</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1104855056</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045921004</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q325.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 277</subfield><subfield code="0">(DE-625)143643:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Joseph, Anthony D.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1188483501</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adversarial machine learning</subfield><subfield code="c">Anthony D. Joseph, University of California, Berkeley; Blaine Nelson, Google; Benjamin I.P. Rubinstein, University of Melbourne; J.D. Tygar, University of California, Berkeley</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Written by leading researchers, this complete introduction brings together all the theory and tools needed for building robust machine learning in adversarial environments. Discover how machine learning systems can adapt when an adversary actively poisons data to manipulate statistical inference, learn the latest practical techniques for investigating system security and performing robust data analysis, and gain insight into new approaches for designing effective countermeasures against the latest wave of cyber-attacks. Privacy-preserving mechanisms and the near-optimal evasion of classifiers are discussed in detail, and in-depth case studies on email spam and network security highlight successful attacks on traditional machine learning algorithms. Providing a thorough overview of the current state of the art in the field, and possible future directions, this groundbreaking work is essential reading for researchers, practitioners and students in computer security and machine learning, and those wanting to learn about the next stage of the cybersecurity arms race"...</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS / Security / General / bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer security</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS / Security / General</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computersicherheit</subfield><subfield code="0">(DE-588)4274324-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Computersicherheit</subfield><subfield code="0">(DE-588)4274324-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nelson, Blaine</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1188485997</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rubinstein, Benjamin I. P.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1188485393</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tygar, J.D.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1188485938</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-107-04346-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1017/9781107338548</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031303492</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://doi.org/10.1017/9781107338548</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://doi.org/10.1017/9781107338548</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://doi.org/10.1017/9781107338548</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UER_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://doi.org/10.1017/9781107338548</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UPA_PDA_CBO_Kauf2020</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045921004 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:30:22Z |
institution | BVB |
isbn | 9781107338548 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031303492 |
oclc_num | 1104855056 |
open_access_boolean | |
owner | DE-12 DE-29 DE-739 DE-92 |
owner_facet | DE-12 DE-29 DE-739 DE-92 |
physical | 1 Online-Ressource Illustrationen, Diagramme |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO_Kauf ZDB-20-CBO UER_PDA_CBO_Kauf ZDB-20-CBO UPA_PDA_CBO_Kauf2020 |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Joseph, Anthony D. Verfasser (DE-588)1188483501 aut Adversarial machine learning Anthony D. Joseph, University of California, Berkeley; Blaine Nelson, Google; Benjamin I.P. Rubinstein, University of Melbourne; J.D. Tygar, University of California, Berkeley Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore Cambridge University Press 2019 1 Online-Ressource Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index "Written by leading researchers, this complete introduction brings together all the theory and tools needed for building robust machine learning in adversarial environments. Discover how machine learning systems can adapt when an adversary actively poisons data to manipulate statistical inference, learn the latest practical techniques for investigating system security and performing robust data analysis, and gain insight into new approaches for designing effective countermeasures against the latest wave of cyber-attacks. Privacy-preserving mechanisms and the near-optimal evasion of classifiers are discussed in detail, and in-depth case studies on email spam and network security highlight successful attacks on traditional machine learning algorithms. Providing a thorough overview of the current state of the art in the field, and possible future directions, this groundbreaking work is essential reading for researchers, practitioners and students in computer security and machine learning, and those wanting to learn about the next stage of the cybersecurity arms race"... COMPUTERS / Security / General / bisacsh Machine learning Computer security COMPUTERS / Security / General Computersicherheit (DE-588)4274324-2 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Computersicherheit (DE-588)4274324-2 s Maschinelles Lernen (DE-588)4193754-5 s DE-604 Nelson, Blaine Verfasser (DE-588)1188485997 aut Rubinstein, Benjamin I. P. Verfasser (DE-588)1188485393 aut Tygar, J.D. Verfasser (DE-588)1188485938 aut Erscheint auch als Druck-Ausgabe, Hardcover 978-1-107-04346-6 http://doi.org/10.1017/9781107338548 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Joseph, Anthony D. Nelson, Blaine Rubinstein, Benjamin I. P. Tygar, J.D Adversarial machine learning COMPUTERS / Security / General / bisacsh Machine learning Computer security COMPUTERS / Security / General Computersicherheit (DE-588)4274324-2 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4274324-2 (DE-588)4193754-5 |
title | Adversarial machine learning |
title_auth | Adversarial machine learning |
title_exact_search | Adversarial machine learning |
title_full | Adversarial machine learning Anthony D. Joseph, University of California, Berkeley; Blaine Nelson, Google; Benjamin I.P. Rubinstein, University of Melbourne; J.D. Tygar, University of California, Berkeley |
title_fullStr | Adversarial machine learning Anthony D. Joseph, University of California, Berkeley; Blaine Nelson, Google; Benjamin I.P. Rubinstein, University of Melbourne; J.D. Tygar, University of California, Berkeley |
title_full_unstemmed | Adversarial machine learning Anthony D. Joseph, University of California, Berkeley; Blaine Nelson, Google; Benjamin I.P. Rubinstein, University of Melbourne; J.D. Tygar, University of California, Berkeley |
title_short | Adversarial machine learning |
title_sort | adversarial machine learning |
topic | COMPUTERS / Security / General / bisacsh Machine learning Computer security COMPUTERS / Security / General Computersicherheit (DE-588)4274324-2 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | COMPUTERS / Security / General / bisacsh Machine learning Computer security COMPUTERS / Security / General Computersicherheit Maschinelles Lernen |
url | http://doi.org/10.1017/9781107338548 |
work_keys_str_mv | AT josephanthonyd adversarialmachinelearning AT nelsonblaine adversarialmachinelearning AT rubinsteinbenjaminip adversarialmachinelearning AT tygarjd adversarialmachinelearning |