Adversarial machine learning:

"Written by leading researchers, this complete introduction brings together all the theory and tools needed for building robust machine learning in adversarial environments. Discover how machine learning systems can adapt when an adversary actively poisons data to manipulate statistical inferen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Joseph, Anthony D. (VerfasserIn), Nelson, Blaine (VerfasserIn), Rubinstein, Benjamin I. P. (VerfasserIn), Tygar, J.D (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore Cambridge University Press 2019
Schlagworte:
Online-Zugang:BSB01
FHN01
UER01
UPA01
Volltext
Zusammenfassung:"Written by leading researchers, this complete introduction brings together all the theory and tools needed for building robust machine learning in adversarial environments. Discover how machine learning systems can adapt when an adversary actively poisons data to manipulate statistical inference, learn the latest practical techniques for investigating system security and performing robust data analysis, and gain insight into new approaches for designing effective countermeasures against the latest wave of cyber-attacks. Privacy-preserving mechanisms and the near-optimal evasion of classifiers are discussed in detail, and in-depth case studies on email spam and network security highlight successful attacks on traditional machine learning algorithms. Providing a thorough overview of the current state of the art in the field, and possible future directions, this groundbreaking work is essential reading for researchers, practitioners and students in computer security and machine learning, and those wanting to learn about the next stage of the cybersecurity arms race"...
Beschreibung:Includes bibliographical references and index
Beschreibung:1 Online-Ressource Illustrationen, Diagramme
ISBN:9781107338548
DOI:10.1017/9781107338548

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen