Hermitian analysis: from Fourier series to Cauchy-Riemann geometry
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Birkhäuser
[2019]
|
Ausgabe: | Second edition |
Schriftenreihe: | Cornerstones
|
Schlagworte: | |
Online-Zugang: | BTU01 FHN01 FHR01 FRO01 FWS01 FWS02 HTW01 TUM01 UBA01 UBM01 UBT01 UBW01 UEI01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (x, 229 Seiten) Illustrationen, Diagramme |
ISBN: | 9783030165147 |
ISSN: | 2197-1838 |
DOI: | 10.1007/978-3-030-16514-7 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV045913901 | ||
003 | DE-604 | ||
005 | 20220207 | ||
007 | cr|uuu---uuuuu | ||
008 | 190606s2019 |||| o||u| ||||||eng d | ||
020 | |a 9783030165147 |c Online |9 978-3-030-16514-7 | ||
024 | 7 | |a 10.1007/978-3-030-16514-7 |2 doi | |
035 | |a (ZDB-2-SMA)9783030165147 | ||
035 | |a (OCoLC)1104861439 | ||
035 | |a (DE-599)BVBBV045913901 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-384 |a DE-898 |a DE-861 |a DE-523 |a DE-703 |a DE-863 |a DE-20 |a DE-739 |a DE-634 |a DE-862 |a DE-92 |a DE-824 |a DE-11 | ||
082 | 0 | |a 515.9 |2 23 | |
084 | |a SK 450 |0 (DE-625)143240: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a D'Angelo, John P. |d 1951- |e Verfasser |0 (DE-588)143370472 |4 aut | |
245 | 1 | 0 | |a Hermitian analysis |b from Fourier series to Cauchy-Riemann geometry |c John P. d'Angelo |
250 | |a Second edition | ||
264 | 1 | |a Cham |b Birkhäuser |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a 1 Online-Ressource (x, 229 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cornerstones |x 2197-1838 | |
650 | 4 | |a Functions of a Complex Variable | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Fourier Analysis | |
650 | 4 | |a Functions of complex variables | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Fourier analysis | |
650 | 0 | 7 | |a Hermite-Polynome |0 (DE-588)4293831-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fourier-Transformation |0 (DE-588)4018014-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fourier-Reihe |0 (DE-588)4155109-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hilbert-Raum |0 (DE-588)4159850-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Ungleichung |0 (DE-588)4705164-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hermite-Polynome |0 (DE-588)4293831-4 |D s |
689 | 0 | 1 | |a Fourier-Reihe |0 (DE-588)4155109-6 |D s |
689 | 0 | 2 | |a Fourier-Transformation |0 (DE-588)4018014-1 |D s |
689 | 0 | 3 | |a Hilbert-Raum |0 (DE-588)4159850-7 |D s |
689 | 0 | 4 | |a Geometrische Ungleichung |0 (DE-588)4705164-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-030-16513-0 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-030-16514-7 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2019 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-031296437 | ||
966 | e | |u https://doi.org/10.1007/978-3-030-16514-7 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-16514-7 |l FHN01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-16514-7 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-16514-7 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-16514-7 |l FWS01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-16514-7 |l FWS02 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-16514-7 |l HTW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-16514-7 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-16514-7 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-16514-7 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-16514-7 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-16514-7 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-16514-7 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-16514-7 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 726426 |
---|---|
_version_ | 1806188403641810944 |
any_adam_object | |
author | D'Angelo, John P. 1951- |
author_GND | (DE-588)143370472 |
author_facet | D'Angelo, John P. 1951- |
author_role | aut |
author_sort | D'Angelo, John P. 1951- |
author_variant | j p d jp jpd |
building | Verbundindex |
bvnumber | BV045913901 |
classification_rvk | SK 450 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)9783030165147 (OCoLC)1104861439 (DE-599)BVBBV045913901 |
dewey-full | 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9 |
dewey-search | 515.9 |
dewey-sort | 3515.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-030-16514-7 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03656nmm a2200769 c 4500</leader><controlfield tag="001">BV045913901</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220207 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190606s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030165147</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-030-16514-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-030-16514-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783030165147</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1104861439</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045913901</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.9</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">D'Angelo, John P.</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143370472</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hermitian analysis</subfield><subfield code="b">from Fourier series to Cauchy-Riemann geometry</subfield><subfield code="c">John P. d'Angelo</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 229 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cornerstones</subfield><subfield code="x">2197-1838</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of a Complex Variable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hermite-Polynome</subfield><subfield code="0">(DE-588)4293831-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fourier-Transformation</subfield><subfield code="0">(DE-588)4018014-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fourier-Reihe</subfield><subfield code="0">(DE-588)4155109-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Ungleichung</subfield><subfield code="0">(DE-588)4705164-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hermite-Polynome</subfield><subfield code="0">(DE-588)4293831-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Fourier-Reihe</subfield><subfield code="0">(DE-588)4155109-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Fourier-Transformation</subfield><subfield code="0">(DE-588)4018014-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Geometrische Ungleichung</subfield><subfield code="0">(DE-588)4705164-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-030-16513-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-030-16514-7</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2019</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031296437</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-16514-7</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-16514-7</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-16514-7</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-16514-7</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-16514-7</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-16514-7</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-16514-7</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-16514-7</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-16514-7</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-16514-7</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-16514-7</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-16514-7</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-16514-7</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-16514-7</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045913901 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T14:31:30Z |
institution | BVB |
isbn | 9783030165147 |
issn | 2197-1838 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031296437 |
oclc_num | 1104861439 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-384 DE-898 DE-BY-UBR DE-861 DE-523 DE-703 DE-863 DE-BY-FWS DE-20 DE-739 DE-634 DE-862 DE-BY-FWS DE-92 DE-824 DE-11 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-384 DE-898 DE-BY-UBR DE-861 DE-523 DE-703 DE-863 DE-BY-FWS DE-20 DE-739 DE-634 DE-862 DE-BY-FWS DE-92 DE-824 DE-11 |
physical | 1 Online-Ressource (x, 229 Seiten) Illustrationen, Diagramme |
psigel | ZDB-2-SMA ZDB-2-SMA_2019 |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Birkhäuser |
record_format | marc |
series2 | Cornerstones |
spellingShingle | D'Angelo, John P. 1951- Hermitian analysis from Fourier series to Cauchy-Riemann geometry Functions of a Complex Variable Differential Geometry Fourier Analysis Functions of complex variables Global differential geometry Fourier analysis Hermite-Polynome (DE-588)4293831-4 gnd Fourier-Transformation (DE-588)4018014-1 gnd Fourier-Reihe (DE-588)4155109-6 gnd Hilbert-Raum (DE-588)4159850-7 gnd Geometrische Ungleichung (DE-588)4705164-4 gnd |
subject_GND | (DE-588)4293831-4 (DE-588)4018014-1 (DE-588)4155109-6 (DE-588)4159850-7 (DE-588)4705164-4 |
title | Hermitian analysis from Fourier series to Cauchy-Riemann geometry |
title_auth | Hermitian analysis from Fourier series to Cauchy-Riemann geometry |
title_exact_search | Hermitian analysis from Fourier series to Cauchy-Riemann geometry |
title_full | Hermitian analysis from Fourier series to Cauchy-Riemann geometry John P. d'Angelo |
title_fullStr | Hermitian analysis from Fourier series to Cauchy-Riemann geometry John P. d'Angelo |
title_full_unstemmed | Hermitian analysis from Fourier series to Cauchy-Riemann geometry John P. d'Angelo |
title_short | Hermitian analysis |
title_sort | hermitian analysis from fourier series to cauchy riemann geometry |
title_sub | from Fourier series to Cauchy-Riemann geometry |
topic | Functions of a Complex Variable Differential Geometry Fourier Analysis Functions of complex variables Global differential geometry Fourier analysis Hermite-Polynome (DE-588)4293831-4 gnd Fourier-Transformation (DE-588)4018014-1 gnd Fourier-Reihe (DE-588)4155109-6 gnd Hilbert-Raum (DE-588)4159850-7 gnd Geometrische Ungleichung (DE-588)4705164-4 gnd |
topic_facet | Functions of a Complex Variable Differential Geometry Fourier Analysis Functions of complex variables Global differential geometry Fourier analysis Hermite-Polynome Fourier-Transformation Fourier-Reihe Hilbert-Raum Geometrische Ungleichung |
url | https://doi.org/10.1007/978-3-030-16514-7 |
work_keys_str_mv | AT dangelojohnp hermitiananalysisfromfourierseriestocauchyriemanngeometry |