The Norm residue theorem in motivic cohomology:
This book presents the complete proof of the Bloch-Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these conjectures describe the structure of étale cohomology and its relation to motivic cohomology and Cho...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton ; NJ
Princeton University Press
[2019]
|
Schriftenreihe: | Annals of mathematics studies
Number 200 |
Schlagworte: | |
Online-Zugang: | DE-1043 DE-1046 DE-858 DE-898 DE-859 DE-860 DE-91 DE-20 DE-706 DE-739 Volltext |
Zusammenfassung: | This book presents the complete proof of the Bloch-Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these conjectures describe the structure of étale cohomology and its relation to motivic cohomology and Chow groups.Although the proof relies on the work of several people, it is credited primarily to Vladimir Voevodsky. The authors draw on a multitude of published and unpublished sources to explain the large-scale structure of Voevodsky’s proof and introduce the key figures behind its development. They go on to describe the highly innovative geometric constructions of Markus Rost, including the construction of norm varieties, which play a crucial role in the proof. The book then addresses symmetric powers of motives and motivic cohomology operations.Comprehensive and self-contained, The Norm Residue Theorem in Motivic Cohomology unites various components of the proof that until now were scattered across many sources of varying accessibility, often with differing hypotheses, definitions, and language |
Beschreibung: | Bandzählung laut Website: 375 |
Beschreibung: | 1 Online-Ressource (x, 299 Seiten) |
ISBN: | 9780691189635 |
DOI: | 10.1515/9780691189635 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV045900358 | ||
003 | DE-604 | ||
005 | 20220331 | ||
007 | cr|uuu---uuuuu | ||
008 | 190527s2019 xx o|||| 00||| eng d | ||
020 | |a 9780691189635 |9 978-0-691-18963-5 | ||
024 | 7 | |a 10.1515/9780691189635 |2 doi | |
035 | |a (OCoLC)1103522730 | ||
035 | |a (DE-599)BVBBV045900358 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-20 |a DE-1046 |a DE-859 |a DE-860 |a DE-739 |a DE-898 |a DE-706 |a DE-1043 |a DE-858 |a DE-83 | ||
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
084 | |a 14F20 |2 msc | ||
084 | |a 14F42 |2 msc | ||
100 | 1 | |a Haesemeyer, Christian |0 (DE-588)1189945118 |4 aut | |
245 | 1 | 0 | |a The Norm residue theorem in motivic cohomology |c Christian Haesemeyer ; Charles A. Weibel |
264 | 1 | |a Princeton ; NJ |b Princeton University Press |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a 1 Online-Ressource (x, 299 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of mathematics studies |v Number 200 | |
500 | |a Bandzählung laut Website: 375 | ||
520 | 3 | |a This book presents the complete proof of the Bloch-Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these conjectures describe the structure of étale cohomology and its relation to motivic cohomology and Chow groups.Although the proof relies on the work of several people, it is credited primarily to Vladimir Voevodsky. The authors draw on a multitude of published and unpublished sources to explain the large-scale structure of Voevodsky’s proof and introduce the key figures behind its development. They go on to describe the highly innovative geometric constructions of Markus Rost, including the construction of norm varieties, which play a crucial role in the proof. The book then addresses symmetric powers of motives and motivic cohomology operations.Comprehensive and self-contained, The Norm Residue Theorem in Motivic Cohomology unites various components of the proof that until now were scattered across many sources of varying accessibility, often with differing hypotheses, definitions, and language | |
650 | 0 | 7 | |a Chow-Gruppe |0 (DE-588)4147916-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kohomologie |0 (DE-588)4031700-6 |2 gnd |9 rswk-swf |
653 | 0 | |a Homology theory | |
653 | 0 | |a MATHEMATICS / Topology | |
653 | 0 | |a Homology theory | |
653 | 6 | |a Electronic books | |
653 | 6 | |a Electronic books | |
689 | 0 | 0 | |a Kohomologie |0 (DE-588)4031700-6 |D s |
689 | 0 | 1 | |a Chow-Gruppe |0 (DE-588)4147916-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Weibel, Charles A. |d 1950- |0 (DE-588)142971200 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |
830 | 0 | |a Annals of mathematics studies |v Number 200 |w (DE-604)BV040389493 |9 200 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9780691189635 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DMA | ||
912 | |a ZDB-23-PST | ||
940 | 1 | |q ZDB-23-DMA19 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-031283186 | |
966 | e | |u https://doi.org/10.1515/9780691189635 |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691189635 |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691189635 |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691189635 |l DE-898 |p ZDB-23-DMA |q ZDB-23-DMA19 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691189635 |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691189635 |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691189635 |l DE-91 |p ZDB-23-DMA |q TUM_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691189635 |l DE-20 |p ZDB-23-DMA |q ZDB-23-DMA19 |x Verlag |3 Volltext | |
966 | e | |u https://www.degruyter.com/view/product/528756 |l DE-706 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691189635 |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1824507449936183296 |
---|---|
adam_text | |
any_adam_object | |
author | Haesemeyer, Christian Weibel, Charles A. 1950- |
author_GND | (DE-588)1189945118 (DE-588)142971200 |
author_facet | Haesemeyer, Christian Weibel, Charles A. 1950- |
author_role | aut aut |
author_sort | Haesemeyer, Christian |
author_variant | c h ch c a w ca caw |
building | Verbundindex |
bvnumber | BV045900358 |
classification_rvk | SK 320 |
collection | ZDB-23-DMA ZDB-23-PST |
ctrlnum | (OCoLC)1103522730 (DE-599)BVBBV045900358 |
discipline | Mathematik |
doi_str_mv | 10.1515/9780691189635 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV045900358</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220331</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190527s2019 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691189635</subfield><subfield code="9">978-0-691-18963-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9780691189635</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1103522730</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045900358</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14F20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14F42</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haesemeyer, Christian</subfield><subfield code="0">(DE-588)1189945118</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Norm residue theorem in motivic cohomology</subfield><subfield code="c">Christian Haesemeyer ; Charles A. Weibel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton ; NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 299 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">Number 200</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Bandzählung laut Website: 375</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book presents the complete proof of the Bloch-Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these conjectures describe the structure of étale cohomology and its relation to motivic cohomology and Chow groups.Although the proof relies on the work of several people, it is credited primarily to Vladimir Voevodsky. The authors draw on a multitude of published and unpublished sources to explain the large-scale structure of Voevodsky’s proof and introduce the key figures behind its development. They go on to describe the highly innovative geometric constructions of Markus Rost, including the construction of norm varieties, which play a crucial role in the proof. The book then addresses symmetric powers of motives and motivic cohomology operations.Comprehensive and self-contained, The Norm Residue Theorem in Motivic Cohomology unites various components of the proof that until now were scattered across many sources of varying accessibility, often with differing hypotheses, definitions, and language</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chow-Gruppe</subfield><subfield code="0">(DE-588)4147916-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohomologie</subfield><subfield code="0">(DE-588)4031700-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Homology theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">MATHEMATICS / Topology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Homology theory</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kohomologie</subfield><subfield code="0">(DE-588)4031700-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Chow-Gruppe</subfield><subfield code="0">(DE-588)4147916-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weibel, Charles A.</subfield><subfield code="d">1950-</subfield><subfield code="0">(DE-588)142971200</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">Number 200</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">200</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9780691189635</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DMA19</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031283186</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691189635</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691189635</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691189635</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691189635</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA19</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691189635</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691189635</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691189635</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691189635</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA19</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/view/product/528756</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691189635</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045900358 |
illustrated | Not Illustrated |
indexdate | 2025-02-19T17:24:55Z |
institution | BVB |
isbn | 9780691189635 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031283186 |
oclc_num | 1103522730 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-20 DE-1046 DE-859 DE-860 DE-739 DE-898 DE-BY-UBR DE-706 DE-1043 DE-858 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-20 DE-1046 DE-859 DE-860 DE-739 DE-898 DE-BY-UBR DE-706 DE-1043 DE-858 DE-83 |
physical | 1 Online-Ressource (x, 299 Seiten) |
psigel | ZDB-23-DMA ZDB-23-PST ZDB-23-DMA19 ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DMA ZDB-23-DMA19 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of mathematics studies |
series2 | Annals of mathematics studies |
spelling | Haesemeyer, Christian (DE-588)1189945118 aut The Norm residue theorem in motivic cohomology Christian Haesemeyer ; Charles A. Weibel Princeton ; NJ Princeton University Press [2019] © 2019 1 Online-Ressource (x, 299 Seiten) txt rdacontent c rdamedia cr rdacarrier Annals of mathematics studies Number 200 Bandzählung laut Website: 375 This book presents the complete proof of the Bloch-Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these conjectures describe the structure of étale cohomology and its relation to motivic cohomology and Chow groups.Although the proof relies on the work of several people, it is credited primarily to Vladimir Voevodsky. The authors draw on a multitude of published and unpublished sources to explain the large-scale structure of Voevodsky’s proof and introduce the key figures behind its development. They go on to describe the highly innovative geometric constructions of Markus Rost, including the construction of norm varieties, which play a crucial role in the proof. The book then addresses symmetric powers of motives and motivic cohomology operations.Comprehensive and self-contained, The Norm Residue Theorem in Motivic Cohomology unites various components of the proof that until now were scattered across many sources of varying accessibility, often with differing hypotheses, definitions, and language Chow-Gruppe (DE-588)4147916-6 gnd rswk-swf Kohomologie (DE-588)4031700-6 gnd rswk-swf Homology theory MATHEMATICS / Topology Electronic books Kohomologie (DE-588)4031700-6 s Chow-Gruppe (DE-588)4147916-6 s DE-604 Weibel, Charles A. 1950- (DE-588)142971200 aut Erscheint auch als Druck-Ausgabe Annals of mathematics studies Number 200 (DE-604)BV040389493 200 https://doi.org/10.1515/9780691189635 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Haesemeyer, Christian Weibel, Charles A. 1950- The Norm residue theorem in motivic cohomology Annals of mathematics studies Chow-Gruppe (DE-588)4147916-6 gnd Kohomologie (DE-588)4031700-6 gnd |
subject_GND | (DE-588)4147916-6 (DE-588)4031700-6 |
title | The Norm residue theorem in motivic cohomology |
title_auth | The Norm residue theorem in motivic cohomology |
title_exact_search | The Norm residue theorem in motivic cohomology |
title_full | The Norm residue theorem in motivic cohomology Christian Haesemeyer ; Charles A. Weibel |
title_fullStr | The Norm residue theorem in motivic cohomology Christian Haesemeyer ; Charles A. Weibel |
title_full_unstemmed | The Norm residue theorem in motivic cohomology Christian Haesemeyer ; Charles A. Weibel |
title_short | The Norm residue theorem in motivic cohomology |
title_sort | the norm residue theorem in motivic cohomology |
topic | Chow-Gruppe (DE-588)4147916-6 gnd Kohomologie (DE-588)4031700-6 gnd |
topic_facet | Chow-Gruppe Kohomologie |
url | https://doi.org/10.1515/9780691189635 |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT haesemeyerchristian thenormresiduetheoreminmotiviccohomology AT weibelcharlesa thenormresiduetheoreminmotiviccohomology |