Extended non-equilibrium thermodynamics: from principles to applications in nanosystems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press, Taylor & Francis Group
[2019]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xiii, 211 Seiten Illustrationen |
ISBN: | 9781138496392 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV045883785 | ||
003 | DE-604 | ||
005 | 20201218 | ||
007 | t | ||
008 | 190517s2019 xxua||| |||| 00||| eng d | ||
010 | |a 018046267 | ||
020 | |a 9781138496392 |9 978-1-138-49639-2 | ||
035 | |a (OCoLC)1098246268 | ||
035 | |a (DE-599)BVBBV045883785 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-11 | ||
050 | 0 | |a QC318.I7 | |
082 | 0 | |a 536/.7 |2 23 | |
084 | |a UG 2000 |0 (DE-625)145616: |2 rvk | ||
100 | 1 | |a Machrafi, Hatim |e Verfasser |4 aut | |
245 | 1 | 0 | |a Extended non-equilibrium thermodynamics |b from principles to applications in nanosystems |c Hatim Machrafi |
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press, Taylor & Francis Group |c [2019] | |
300 | |a xiii, 211 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Nonequilibrium thermodynamics | |
650 | 4 | |a Nanotechnology | |
650 | 0 | 7 | |a Nichtgleichgewichtsthermodynamik |0 (DE-588)4130850-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtgleichgewichtsthermodynamik |0 (DE-588)4130850-5 |D s |
689 | 0 | 1 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031266898&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031266898&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-031266898 |
Datensatz im Suchindex
_version_ | 1804180034889449472 |
---|---|
adam_text | Contents Preface xi Author xiii I 1 General Considerations Extended Non-Equilibrium Thermodynamics: Constitutive Equations at Small Length Scales and High Frequencies 1.1 1.2 2 1 3 Introduction ..................................................................................................... A General Heat Transport Equation in Ternis of High-Order Heat Fluxes................................................................................................................. 1.3 A Generalized Transport Equation in Terms of the Heat Flux .................. 1.4 A Simplified Expression of Eq. (1.17) 1.5 One-Dimensional Numerical Illustration........................................................ 1.6 Extension to Other Constitutive Laws........................................................... 1.7 Conclusions........................................................................................................ References.................................................................................................................... 3 5 7 7 9 10 10 Heat Transfer inNanomaterials 11 2.1 11 11 11 12 14 14 15 15 Transient Heat Transport in Nanofilms ........................................................ 2.1.1 Definition of the Space of State Variables.......................................... 2.1.2 Establishment of the Evolution Equations......................................... 2.1.3 Elimination of the Fluxes.................................................................... 2.2 Transient Temperature Distribution in Thin Films...................................... 2.2.1
Initial Conditions................................................................................... 2.2.2 Boundary Conditions .......................................................................... 2.2.3 Discussion of the Results .................................................................... 2.3 Heat Conduction in Nanoparticles Through an Effective Thermal Conductivity..................................................................................................... 2.4 Heat Conduction in Nanowires Through an Effective Thermal Conductivity..................................................................................................... References.................................................................................................................... 3 Heat Conduction inNanocomposites 3.1 3.2 Theoretical Models ......................................................................................... 3.1.1 Effective Medium Approach................................................................. 3.1.2 Effect of Agglomeration....................................................................... 3.1.3 Effective Thermal Conductivity of the MatrLx and the Nanoparticles......................................................................................... 3.1.4 Nanocomposites with Embedded Nanowires....................................... 3.1.5 Temperature Dependence.................................................................... Polymeric Nanocomposites ............................................................................. 3.2.1 Yolume-
Fraction-Dcpendont Agglomeration...................................... 3 17 20 20 23 23 23 24 24 25 26 27 27
Contents VI 3.2.2 Dependence of the Effective Thermal Conductivity Versus the Volume-Fraction-Dependent Agglomeration....................................... 3.2.3 Final Validation of Dependence of the Effective Thermal Conductivity Versus the Volume-Fraction-Dependent Agglomeration..................... 3.3 Semiconductor Nanocomposites ..................................................................... 3.3.1 Application to Si/Ge Nanocomposites with Nanoparticle Inclusions............................................................................................... 3.3.2 Application to Si/Ge Nanocomposites with Nanowire Inclusions ... 3.4 Nanoporous Composites................................................................................... 3.4.1 Nanoporous Materials.......................................................................... 3.4.2 Nanoporous Particles in a Composite................................................... References.................................................................................................................... II Selected Applications 4 Thermal Rectifier Efficiency of Various Bulk-Nanoporous Silicon Devices 4.1 4.2 Principles of Thermal Rectifiers .................................................................... Thermal Conductivity of Bulk and Porous Silicon ....................................... 4.2.1 Thermal Conductivity.......................................................................... 4.2.2 Notions on the Thermal Boundary Resistance.................................... 4.3 Configurations for Thermal Rectifiers
........................................................... 4.3.1 Homogeneous Two- and Three-Phase Systems.................................... 4.3.2 Bulk-Porous-Bulk and Porous-Bulk-Porous Si Configurations ... 4.3.3 Graded Porosity.................................................................................... 4.3.4 Graded Pore Size.................................................................................... 4.4 Analysis of Thermal Rectification ................................................................. 4.4.1 Homogeneous Two- and Three-Phase Systems.................................... 4.4.2 Bulk-Porous-Bulk and Porous-Bulk-Porous Si Configurations ... 4.4.3 Graded Porosity.................................................................................... 4.4.4 Graded Pore Size.................................................................................... 4.5 Combining Graded Porosity and Pore Size .................................................. References................................................................................................................... 5 Thermoelectric Devices 5.1 Thermodynamics Behind Thermoelectric Devices ....................................... 5.2 Basics in Nanoscale Heat and Electric Transfer............................................ 5.3 Nanofilm Thermoelectric Devices.................................................................... 5.3.1 Theory ................................................................................................. 5.3.2 Case Study: Thin Films of Bi and
ВІ2ТЄ3......................................... 5.3.2.1 Material Properties.............................................................. 5.3.2.2 Discussion ............................................................................. 5.4 Nanocomposite Thermoelectric Devices ........................................................ 5.4.1 Theory ................................................................................................. 5.4.2 Two Case Studies: Nanocomposites of Bi Nanoparticles in Bi2Te3 and of Ві2Тез Nanoparticles in Bi.............................................................. 5.5 Thin-Film Nanocomposite Thermoelectric Devices....................................... 5.5.1 Theory ................................................................................................. 5.5.2 Discussion on a Gedankenexperiment.................................................. References................................................................................................................... 31 32 34 34 38 40 40 46 48 55 57 57 58 58 60 60 60 62 63 64 64 64 65 65 67 68 68 71 71 73 75 75 76 76 77 79 79 84 88 88 90 91
Contents vii 6 Enhancement of the Thermal Conductivity in Nanofluids and the Role of Viscosity 6.1 Context.................................................................................................................. 6.2 Influence of Several Heat Transfer Mechanisms.............................................. 6.2.1 Hypotheses............................................................................................... 6.2.2 Liquid Layering......................................................................................... 6.2.3 Agglomeration of Particles...................................................................... 6.2.4 Brownian Motion...................................................................................... 6.3 Viscosity of Nanofluids ...................................................................................... 6.3.1 Viscous Pressure Flux............................................................................. 6.3.2 Third-Order Approximation................................................................... 6.3.3 Complete Expression................................................................................ 6.4 Discussion and Case Studies for the Thermal Conductivity ......................... 6.4.1 Thermal Conductivities of Alumina-Water, Alumina-Ethylene Glycol and Alumina-50/50 w% Water/Ethylene Glycol Mixture Nanofluids................................................................................... 6.4.2 Note on the Brownian Motion................................................................ 6.4.3 Thermal
Conductivity as a Functionof the Particle Size.................... 6.4.4 Complementary Comments................................................................... 6.5 Discussion and Case Studies for the Viscosity................................................. 6.5.1 Alumina AI2O3 Particles in Water....................................................... 6.5.2 Li Nanoparticles Dispersed in LiquidAr............................................... 6.6 Closing Notions on the Use of Nanofluids ....................................................... References........................................................................................................................ 104 107 108 109 110 110 110 112 113 7 NanoporousFlow and Permeability 7.1 Porous Flow ........................................................................................................ 7.2 Nanoporous Flow ............................................................................................... 7.2.1 Extended Constitutive Equation of the Mass Flux............................ 7.2.2 The Basic Momentum Equation .......................................................... 7.2.3 Absolute Permeability............................................................................. 7.3 Effective Permeability......................................................................................... 7.3.1 Nanopores with Circular Cross Sections.............................................. 7.3.2 Nanopores with Parallelepiped CrossSections...................................... 7.3.3 Effective
Viscosity................................................................................... 7.4 Asymptotic Limits............................................................................................... 7.5 Case Study: Flow in Nanoporous Glass .......................................................... References........................................................................................................................ 121 121 122 122 124 125 126 126 128 130 132 135 136 95 95 95 95 96 97 98 99 99 100 103 104 8 Opto-Thermoelectric Coupling forPhotovoltaic Energy 139 8.1 State of the Art .................................................................................................. 139 8.2 Nanostructured ТЕ Model ................................................................................ 140 8.2.1 ТЕ Efficiency............................................................................................ 140 8.2.2 ТЕ Material Properties for the Nanocomposite Legs........................ 142 8.3 Nanoscale Material Properties .......................................................................... 144 8.4 Optoelectric Model for the PV Device............................................................. 147 8.4.1 Basic Considerations................................................................................ 147 8.4.2 Depletion Region...................................................................................... 149 8.4.3 Quasi-Neutral Regions............................................................................. 150 8.4.4 PV
Efficiency............................................................................................ 154
Contents viii 8.5 Analysis of the Heat Management of the Cooled Hybrid System ............... 8.5.1 Heat Generation in the PV Device...................................................... 8.5.2 Temperature Profiles.............................................................................. 8.5.3 Operating Temperatures........................................................................ 8.5.4 Total Efficiency of the Hybrid System................................................ References...................................................................................................................... III 9 Advanced Applications and Perspectives Optimal Enhancement of Photovoltaic Energy by Coupling to a Cooled Nanocomposite Thermoelectric Hybrid System 9.1 Case Study: Material Properties and Operating Conditions........................ 9.1.1 Material Properties for the Photovoltaic Materials........................... 9.1.2 Material Properties for the Thermoelectric Materials........................ 9.1.3 Other Operating Characteristics and General Physical Properties................................................................................................ 9.2 Case Study: Photovoltaic Performance ......................................................... 9.2.1 Optimal Thickness of the Photovoltaic Device.................................... 9.2.2 Influence of Nanocomposite Characteristics on Thermoelectric Efficiency................................................................................................ 9.2.3 Optimal Hybrid Opto-Thermoelectric Efficiency
.............................. 9.3 Discussion ......................................................................................................... References..................................................................................................................... 155 155 157 158 159 160 163 165 165 165 166 167 167 167 173 176 176 177 10 Nanomedicine: Permeation of Drug Delivery Through Cell Membrane 181 10.1 Transporters of Drugs....................................................................................... 10.1.1 Background............................................................................................. 10.1.2 Challenges ............................................................................................. 10.1.2.1 Mucous Layer ........................................................................ 10.1.2.2 Apical Cell Membrane............................................................ 10.1.2.3 Basal Cell Membrane............................................................ 10.1.2.4 Capillary Wall........................................................................ 10.2 Permeability Enhancement .............................................................................. 10.2.1 Nano-emulsions....................................................................................... 10.2.2 Spray Freeze-Drying.............................................................................. 10.2.3 Chitosan Derivatives.............................................................................. 10.2.4 Straight Chain Fatty
Acids.................................................................. 10.2.5 Self-Micro-Emulsifying Drug Delivery Systems ................................. 10.3 Modeling Considerations for Drug Delivery Permeation .............................. 10.3.1 Context................................................................................................... 10.3.2 Solubility and Permeability.................................................................. 10.4 Example: Cell Permeation .............................................................................. 10.4.1 Permeation as a Set of Barrier Resistances.......................................... 10.4.2 Solubility Diffusion Theory.................................................................. References.................................................................................................................... 181 181 181 182 182 182 182 182 182 182 183 183 183 183 183 183 184 184 185 186 11 Self-Assembled Nanostructures as Building Blocks for Nanomedicine Carriers: Thermal and Electrical Conductance 11.1 Context............................................................................................................... 11.2 Theory ............................................................................................................... 11.3 Experimental...................................................................................................... 189 189 190 191
Contents ix 11.3.1 Self-Assembly Process.............................................................................. 11.3.2 Measurements .......................................................................................... 11.3.2.1 Electrical Conductivity........................................................... 11.3.2.2 Thermal Conductivity.............................................................. 11.3.2.3 Thickness of Deposited Layer.................................................. 11.4 Results and Discussion ....................................................................................... 11.4.1 Electrical Conductivity ........................................................................... 11.4.2 Thermal Conductivity.............................................................................. 11.4.3 Porosity....................................................................................................... 11.5 Linking Theory to Experiment .......................................................................... References......................................................................................................................... 191 192 192 193 193 193 193 194 195 196 197 Epilogue Unit Conversions Index 201 203 205
Extended Non-Equilibrium Thermodynamics provides powerful tools departing not from empirical or statistical considerations but from fundamental thermodynamic laws, proposing final solutions that are readily usable and recognizable for students, research ers and industry. The book deals with methods that allow combining easily the present theory with other fields of science, such as fluid and solid mechanics, heat and mass transfer processes, electricity and thermoelectricity, and so on. Not only are such com binations facilitated, but they are incorporated into the developments in such a way that they become part of the theory This book aims at providing for a systematic presentation of Extended Non-Equilibrium Thermodynamics in nanosystems with a high degree of ap plicability. Furthermore, the book deals with how physical properties of systems behave as a function of their size. Moreover, it provides for a systematic approach to understand the behavior of thermal, electrical, thermoelectric, photovoltaic and nanofluid properties in nanosystems. Experimental results are used to validate the theory, the comparison is analysed, justified and discussed, and the theory is then again used to understand better experimental observations. The new developments in this book, being recognizable in relation with familiar concepts, should make it appealing for academics and researchers to teach and apply and graduate students to use. The text in this book is intended to bring attention to how the theory can be applied to real-life applications in nanoscaled environments. Case
studies, and applications of theories, are explored including thereby nanoporous systems, solar panels, nanomedicine, medication permeation and proper ties of nanoporous scaffolds. FEATURES • Explores new generalized thermodynamic models • Provides introductory context of Extended Non-Equilibrium Thermodynamics within classical thermodynamics, theoretical fundamentals and several applications in nanosystems • Provides for a systematic approach to understand the behavior of thermal, electric, thermoelectric and viscous properties as a function of several parameters in nanosystems • Includes reflections to encourage the reader to think further and place the information into context in view of new applications • Examines future developments of new constitutive equations and theories and places them in the framework of real-life applications in the energetic and medical sectors, such as photovoltaic and thermoelectric devices, nanoporous media, medication delivery and scaffolds NANOSCIENCE THERMODYNAMICS CRC Press Taylor Francis Croup an informa business www.crcpress.com CRC Press titles are available as eBook editions in a range of digital formats 9781138496392
|
any_adam_object | 1 |
author | Machrafi, Hatim |
author_facet | Machrafi, Hatim |
author_role | aut |
author_sort | Machrafi, Hatim |
author_variant | h m hm |
building | Verbundindex |
bvnumber | BV045883785 |
callnumber-first | Q - Science |
callnumber-label | QC318 |
callnumber-raw | QC318.I7 |
callnumber-search | QC318.I7 |
callnumber-sort | QC 3318 I7 |
callnumber-subject | QC - Physics |
classification_rvk | UG 2000 |
ctrlnum | (OCoLC)1098246268 (DE-599)BVBBV045883785 |
dewey-full | 536/.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 536 - Heat |
dewey-raw | 536/.7 |
dewey-search | 536/.7 |
dewey-sort | 3536 17 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01986nam a2200433 c 4500</leader><controlfield tag="001">BV045883785</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201218 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">190517s2019 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">018046267</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781138496392</subfield><subfield code="9">978-1-138-49639-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1098246268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045883785</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC318.I7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">536/.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 2000</subfield><subfield code="0">(DE-625)145616:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Machrafi, Hatim</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extended non-equilibrium thermodynamics</subfield><subfield code="b">from principles to applications in nanosystems</subfield><subfield code="c">Hatim Machrafi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press, Taylor & Francis Group</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 211 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonequilibrium thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanotechnology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtgleichgewichtsthermodynamik</subfield><subfield code="0">(DE-588)4130850-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtgleichgewichtsthermodynamik</subfield><subfield code="0">(DE-588)4130850-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031266898&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031266898&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031266898</subfield></datafield></record></collection> |
id | DE-604.BV045883785 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:29:21Z |
institution | BVB |
isbn | 9781138496392 |
language | English |
lccn | 018046267 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031266898 |
oclc_num | 1098246268 |
open_access_boolean | |
owner | DE-703 DE-11 |
owner_facet | DE-703 DE-11 |
physical | xiii, 211 Seiten Illustrationen |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | CRC Press, Taylor & Francis Group |
record_format | marc |
spelling | Machrafi, Hatim Verfasser aut Extended non-equilibrium thermodynamics from principles to applications in nanosystems Hatim Machrafi Boca Raton ; London ; New York CRC Press, Taylor & Francis Group [2019] xiii, 211 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Nonequilibrium thermodynamics Nanotechnology Nichtgleichgewichtsthermodynamik (DE-588)4130850-5 gnd rswk-swf Nanostrukturiertes Material (DE-588)4342626-8 gnd rswk-swf Nichtgleichgewichtsthermodynamik (DE-588)4130850-5 s Nanostrukturiertes Material (DE-588)4342626-8 s DE-604 Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031266898&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031266898&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Machrafi, Hatim Extended non-equilibrium thermodynamics from principles to applications in nanosystems Nonequilibrium thermodynamics Nanotechnology Nichtgleichgewichtsthermodynamik (DE-588)4130850-5 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd |
subject_GND | (DE-588)4130850-5 (DE-588)4342626-8 |
title | Extended non-equilibrium thermodynamics from principles to applications in nanosystems |
title_auth | Extended non-equilibrium thermodynamics from principles to applications in nanosystems |
title_exact_search | Extended non-equilibrium thermodynamics from principles to applications in nanosystems |
title_full | Extended non-equilibrium thermodynamics from principles to applications in nanosystems Hatim Machrafi |
title_fullStr | Extended non-equilibrium thermodynamics from principles to applications in nanosystems Hatim Machrafi |
title_full_unstemmed | Extended non-equilibrium thermodynamics from principles to applications in nanosystems Hatim Machrafi |
title_short | Extended non-equilibrium thermodynamics |
title_sort | extended non equilibrium thermodynamics from principles to applications in nanosystems |
title_sub | from principles to applications in nanosystems |
topic | Nonequilibrium thermodynamics Nanotechnology Nichtgleichgewichtsthermodynamik (DE-588)4130850-5 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd |
topic_facet | Nonequilibrium thermodynamics Nanotechnology Nichtgleichgewichtsthermodynamik Nanostrukturiertes Material |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031266898&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031266898&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT machrafihatim extendednonequilibriumthermodynamicsfromprinciplestoapplicationsinnanosystems |