Elementary Particle Theory, Volume 1, Quantum Mechanics:
This book introduces notation, terminology, and basic ideas of relativistic quantum theories. The discussion proceeds systematically from the principle of relativity and postulates of quantum logics to the construction of Poincaré invariant few-particle models of interaction and scattering. It is th...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2018]
|
Schriftenreihe: | De Gruyter Studies in Mathematical Physics
45 |
Schlagworte: | |
Online-Zugang: | DE-1043 DE-1046 DE-858 DE-Aug4 DE-M347 DE-898 DE-859 DE-860 DE-739 URL des Erstveröffentlichers |
Zusammenfassung: | This book introduces notation, terminology, and basic ideas of relativistic quantum theories. The discussion proceeds systematically from the principle of relativity and postulates of quantum logics to the construction of Poincaré invariant few-particle models of interaction and scattering. It is the first of three volumes formulating a consistent relativistic quantum theory of interacting charged particles. Contents Quantum logic Poincaré group Quantum mechanics and relativity Observables Elementary particles Interaction Scattering Delta function Groups and vector spaces Group of rotations Lie groups and Lie algebras Hilbert space Operators Subspaces and projections Representations of groups and algebras Pseudo-orthogonal representation of Lorentz group |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Nov 2018) |
Beschreibung: | 1 online resource (278 pages) |
ISBN: | 9783110492132 |
DOI: | 10.1515/9783110492132 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045879553 | ||
003 | DE-604 | ||
005 | 20240923 | ||
007 | cr|uuu---uuuuu | ||
008 | 190515s2018 |||| o||u| ||||||eng d | ||
020 | |a 9783110492132 |9 978-3-11-049213-2 | ||
024 | 7 | |a 10.1515/9783110492132 |2 doi | |
035 | |a (ZDB-23-DGG)9783110492132 | ||
035 | |a (OCoLC)1101923045 | ||
035 | |a (DE-599)BVBBV045879553 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-M347 |a DE-1046 |a DE-1043 |a DE-858 |a DE-898 | ||
082 | 0 | |a 530.12 |2 23 | |
100 | 1 | |a Stefanovich, Eugene |e Verfasser |4 aut | |
245 | 1 | 0 | |a Elementary Particle Theory, Volume 1, Quantum Mechanics |c Eugene Stefanovich |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2018] | |
264 | 4 | |c © 2019 | |
300 | |a 1 online resource (278 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter Studies in Mathematical Physics |v 45 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Nov 2018) | ||
520 | |a This book introduces notation, terminology, and basic ideas of relativistic quantum theories. The discussion proceeds systematically from the principle of relativity and postulates of quantum logics to the construction of Poincaré invariant few-particle models of interaction and scattering. It is the first of three volumes formulating a consistent relativistic quantum theory of interacting charged particles. Contents Quantum logic Poincaré group Quantum mechanics and relativity Observables Elementary particles Interaction Scattering Delta function Groups and vector spaces Group of rotations Lie groups and Lie algebras Hilbert space Operators Subspaces and projections Representations of groups and algebras Pseudo-orthogonal representation of Lorentz group | ||
546 | |a In English | ||
650 | 4 | |a Elementarteilchenphysik | |
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Particles (Nuclear physics) | |
650 | 4 | |a Quantum theory | |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783110490886 |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110492132 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DPC | ||
940 | 1 | |q ZDB-23-DPC18 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-031262729 | |
966 | e | |u https://doi.org/10.1515/9783110492132 |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110492132 |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110492132 |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110492132 |l DE-Aug4 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110492132 |l DE-M347 |p ZDB-23-DPC |q ZDB-23-DPC18 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110492132?locatt=mode:legacy |l DE-898 |p ZDB-23-DPC |q ZDB-23-DPC18 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110492132 |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110492132 |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110492132 |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1811003850824351744 |
---|---|
adam_text | |
any_adam_object | |
author | Stefanovich, Eugene |
author_facet | Stefanovich, Eugene |
author_role | aut |
author_sort | Stefanovich, Eugene |
author_variant | e s es |
building | Verbundindex |
bvnumber | BV045879553 |
collection | ZDB-23-DGG ZDB-23-DPC |
ctrlnum | (ZDB-23-DGG)9783110492132 (OCoLC)1101923045 (DE-599)BVBBV045879553 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1515/9783110492132 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zcb4500</leader><controlfield tag="001">BV045879553</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240923</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190515s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110492132</subfield><subfield code="9">978-3-11-049213-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110492132</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110492132</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1101923045</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045879553</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stefanovich, Eugene</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elementary Particle Theory, Volume 1, Quantum Mechanics</subfield><subfield code="c">Eugene Stefanovich</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (278 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter Studies in Mathematical Physics</subfield><subfield code="v">45</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Nov 2018)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book introduces notation, terminology, and basic ideas of relativistic quantum theories. The discussion proceeds systematically from the principle of relativity and postulates of quantum logics to the construction of Poincaré invariant few-particle models of interaction and scattering. It is the first of three volumes formulating a consistent relativistic quantum theory of interacting charged particles. Contents Quantum logic Poincaré group Quantum mechanics and relativity Observables Elementary particles Interaction Scattering Delta function Groups and vector spaces Group of rotations Lie groups and Lie algebras Hilbert space Operators Subspaces and projections Representations of groups and algebras Pseudo-orthogonal representation of Lorentz group</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elementarteilchenphysik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particles (Nuclear physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783110490886</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110492132</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DPC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DPC18</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031262729</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110492132</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110492132</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110492132</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110492132</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110492132</subfield><subfield code="l">DE-M347</subfield><subfield code="p">ZDB-23-DPC</subfield><subfield code="q">ZDB-23-DPC18</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110492132?locatt=mode:legacy</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-23-DPC</subfield><subfield code="q">ZDB-23-DPC18</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110492132</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110492132</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110492132</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045879553 |
illustrated | Not Illustrated |
indexdate | 2024-09-23T16:10:58Z |
institution | BVB |
isbn | 9783110492132 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031262729 |
oclc_num | 1101923045 |
open_access_boolean | |
owner | DE-Aug4 DE-859 DE-860 DE-739 DE-M347 DE-1046 DE-1043 DE-858 DE-898 DE-BY-UBR |
owner_facet | DE-Aug4 DE-859 DE-860 DE-739 DE-M347 DE-1046 DE-1043 DE-858 DE-898 DE-BY-UBR |
physical | 1 online resource (278 pages) |
psigel | ZDB-23-DGG ZDB-23-DPC ZDB-23-DPC18 ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DPC ZDB-23-DPC18 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter Studies in Mathematical Physics |
spelling | Stefanovich, Eugene Verfasser aut Elementary Particle Theory, Volume 1, Quantum Mechanics Eugene Stefanovich Berlin ; Boston De Gruyter [2018] © 2019 1 online resource (278 pages) txt rdacontent c rdamedia cr rdacarrier De Gruyter Studies in Mathematical Physics 45 Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Nov 2018) This book introduces notation, terminology, and basic ideas of relativistic quantum theories. The discussion proceeds systematically from the principle of relativity and postulates of quantum logics to the construction of Poincaré invariant few-particle models of interaction and scattering. It is the first of three volumes formulating a consistent relativistic quantum theory of interacting charged particles. Contents Quantum logic Poincaré group Quantum mechanics and relativity Observables Elementary particles Interaction Scattering Delta function Groups and vector spaces Group of rotations Lie groups and Lie algebras Hilbert space Operators Subspaces and projections Representations of groups and algebras Pseudo-orthogonal representation of Lorentz group In English Elementarteilchenphysik Quantentheorie Particles (Nuclear physics) Quantum theory Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 s DE-604 Erscheint auch als Druck-Ausgabe 9783110490886 https://doi.org/10.1515/9783110492132 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Stefanovich, Eugene Elementary Particle Theory, Volume 1, Quantum Mechanics Elementarteilchenphysik Quantentheorie Particles (Nuclear physics) Quantum theory Quantenmechanik (DE-588)4047989-4 gnd |
subject_GND | (DE-588)4047989-4 |
title | Elementary Particle Theory, Volume 1, Quantum Mechanics |
title_auth | Elementary Particle Theory, Volume 1, Quantum Mechanics |
title_exact_search | Elementary Particle Theory, Volume 1, Quantum Mechanics |
title_full | Elementary Particle Theory, Volume 1, Quantum Mechanics Eugene Stefanovich |
title_fullStr | Elementary Particle Theory, Volume 1, Quantum Mechanics Eugene Stefanovich |
title_full_unstemmed | Elementary Particle Theory, Volume 1, Quantum Mechanics Eugene Stefanovich |
title_short | Elementary Particle Theory, Volume 1, Quantum Mechanics |
title_sort | elementary particle theory volume 1 quantum mechanics |
topic | Elementarteilchenphysik Quantentheorie Particles (Nuclear physics) Quantum theory Quantenmechanik (DE-588)4047989-4 gnd |
topic_facet | Elementarteilchenphysik Quantentheorie Particles (Nuclear physics) Quantum theory Quantenmechanik |
url | https://doi.org/10.1515/9783110492132 |
work_keys_str_mv | AT stefanovicheugene elementaryparticletheoryvolume1quantummechanics |