Small Worlds: The Dynamics of Networks between Order and Randomness
Everyone knows the small-world phenomenon: soon after meeting a stranger, we are surprised to discover that we have a mutual friend, or we are connected through a short chain of acquaintances. In his book, Duncan Watts uses this intriguing phenomenon--colloquially called "six degrees of separat...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[2018]
|
Schriftenreihe: | Princeton Studies in Complexity
9 |
Schlagworte: | |
Online-Zugang: | DE-859 DE-860 DE-739 DE-1046 DE-1043 DE-858 Volltext |
Zusammenfassung: | Everyone knows the small-world phenomenon: soon after meeting a stranger, we are surprised to discover that we have a mutual friend, or we are connected through a short chain of acquaintances. In his book, Duncan Watts uses this intriguing phenomenon--colloquially called "six degrees of separation"--as a prelude to a more general exploration: under what conditions can a small world arise in any kind of network? The networks of this story are everywhere: the brain is a network of neurons; organisations are people networks; the global economy is a network of national economies, which are networks of markets, which are in turn networks of interacting producers and consumers. Food webs, ecosystems, and the Internet can all be represented as networks, as can strategies for solving a problem, topics in a conversation, and even words in a language. Many of these networks, the author claims, will turn out to be small worlds. How do such networks matter? Simply put, local actions can have global consequences, and the relationship between local and global dynamics depends critically on the network's structure. Watts illustrates the subtleties of this relationship using a variety of simple models---the spread of infectious disease through a structured population; the evolution of cooperation in game theory; the computational capacity of cellular automata; and the sychronisation of coupled phase-oscillators. Watts's novel approach is relevant to many problems that deal with network connectivity and complex systems' behaviour in general: How do diseases (or rumours) spread through social networks? How does cooperation evolve in large groups? How do cascading failures propagate through large power grids, or financial systems? What is the most efficient architecture for an organisation, or for a communications network? This fascinating exploration will be fruitful in a remarkable variety of fields, including physics and mathematics, as well as sociology, economics, and biology |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Nov 2018) |
Beschreibung: | 1 online resource |
ISBN: | 9780691188331 |
DOI: | 10.1515/9780691188331 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV045879054 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 190515s2018 xx o|||| 00||| eng d | ||
020 | |a 9780691188331 |9 978-0-691-18833-1 | ||
024 | 7 | |a 10.1515/9780691188331 |2 doi | |
035 | |a (ZDB-23-DGG)9780691188331 | ||
035 | |a (OCoLC)1101912801 | ||
035 | |a (DE-599)BVBBV045879054 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-739 |a DE-1046 |a DE-1043 |a DE-858 | ||
082 | 0 | |a 511/.5 |2 23 | |
100 | 1 | |a Watts, Duncan J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Small Worlds |b The Dynamics of Networks between Order and Randomness |c Duncan J. Watts |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [2018] | |
264 | 4 | |c © 1999 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Princeton Studies in Complexity |v 9 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Nov 2018) | ||
520 | |a Everyone knows the small-world phenomenon: soon after meeting a stranger, we are surprised to discover that we have a mutual friend, or we are connected through a short chain of acquaintances. In his book, Duncan Watts uses this intriguing phenomenon--colloquially called "six degrees of separation"--as a prelude to a more general exploration: under what conditions can a small world arise in any kind of network? The networks of this story are everywhere: the brain is a network of neurons; organisations are people networks; the global economy is a network of national economies, which are networks of markets, which are in turn networks of interacting producers and consumers. Food webs, ecosystems, and the Internet can all be represented as networks, as can strategies for solving a problem, topics in a conversation, and even words in a language. Many of these networks, the author claims, will turn out to be small worlds. How do such networks matter? Simply put, local actions can have global consequences, and the relationship between local and global dynamics depends critically on the network's structure. Watts illustrates the subtleties of this relationship using a variety of simple models---the spread of infectious disease through a structured population; the evolution of cooperation in game theory; the computational capacity of cellular automata; and the sychronisation of coupled phase-oscillators. Watts's novel approach is relevant to many problems that deal with network connectivity and complex systems' behaviour in general: How do diseases (or rumours) spread through social networks? How does cooperation evolve in large groups? How do cascading failures propagate through large power grids, or financial systems? What is the most efficient architecture for an organisation, or for a communications network? This fascinating exploration will be fruitful in a remarkable variety of fields, including physics and mathematics, as well as sociology, economics, and biology | ||
546 | |a In English | ||
650 | 4 | |a Graph theory | |
650 | 4 | |a Network analysis (Planning) | |
650 | 4 | |a Social networks |x Mathematical models | |
650 | 0 | 7 | |a Graphentheorie |0 (DE-588)4113782-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Soziales Netzwerk |0 (DE-588)4055762-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Netzplantechnik |0 (DE-588)4075297-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graphentheoretisches Modell |0 (DE-588)4158055-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Soziales Netzwerk |0 (DE-588)4055762-5 |D s |
689 | 0 | 1 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Soziales Netzwerk |0 (DE-588)4055762-5 |D s |
689 | 1 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Graphentheoretisches Modell |0 (DE-588)4158055-2 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Netzplantechnik |0 (DE-588)4075297-5 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9780691188331 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-23-DGG | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-031262231 | |
966 | e | |u https://doi.org/10.1515/9780691188331?locatt=mode:legacy |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691188331?locatt=mode:legacy |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691188331?locatt=mode:legacy |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691188331?locatt=mode:legacy |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691188331?locatt=mode:legacy |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691188331?locatt=mode:legacy |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1824507436925452288 |
---|---|
adam_text | |
any_adam_object | |
author | Watts, Duncan J. |
author_facet | Watts, Duncan J. |
author_role | aut |
author_sort | Watts, Duncan J. |
author_variant | d j w dj djw |
building | Verbundindex |
bvnumber | BV045879054 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9780691188331 (OCoLC)1101912801 (DE-599)BVBBV045879054 |
dewey-full | 511/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.5 |
dewey-search | 511/.5 |
dewey-sort | 3511 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9780691188331 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV045879054</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190515s2018 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691188331</subfield><subfield code="9">978-0-691-18833-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9780691188331</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9780691188331</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1101912801</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045879054</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Watts, Duncan J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Small Worlds</subfield><subfield code="b">The Dynamics of Networks between Order and Randomness</subfield><subfield code="c">Duncan J. Watts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Princeton Studies in Complexity</subfield><subfield code="v">9</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Nov 2018)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Everyone knows the small-world phenomenon: soon after meeting a stranger, we are surprised to discover that we have a mutual friend, or we are connected through a short chain of acquaintances. In his book, Duncan Watts uses this intriguing phenomenon--colloquially called "six degrees of separation"--as a prelude to a more general exploration: under what conditions can a small world arise in any kind of network? The networks of this story are everywhere: the brain is a network of neurons; organisations are people networks; the global economy is a network of national economies, which are networks of markets, which are in turn networks of interacting producers and consumers. Food webs, ecosystems, and the Internet can all be represented as networks, as can strategies for solving a problem, topics in a conversation, and even words in a language. Many of these networks, the author claims, will turn out to be small worlds. How do such networks matter? Simply put, local actions can have global consequences, and the relationship between local and global dynamics depends critically on the network's structure. Watts illustrates the subtleties of this relationship using a variety of simple models---the spread of infectious disease through a structured population; the evolution of cooperation in game theory; the computational capacity of cellular automata; and the sychronisation of coupled phase-oscillators. Watts's novel approach is relevant to many problems that deal with network connectivity and complex systems' behaviour in general: How do diseases (or rumours) spread through social networks? How does cooperation evolve in large groups? How do cascading failures propagate through large power grids, or financial systems? What is the most efficient architecture for an organisation, or for a communications network? This fascinating exploration will be fruitful in a remarkable variety of fields, including physics and mathematics, as well as sociology, economics, and biology</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network analysis (Planning)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social networks</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Soziales Netzwerk</subfield><subfield code="0">(DE-588)4055762-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Netzplantechnik</subfield><subfield code="0">(DE-588)4075297-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheoretisches Modell</subfield><subfield code="0">(DE-588)4158055-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Soziales Netzwerk</subfield><subfield code="0">(DE-588)4055762-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Soziales Netzwerk</subfield><subfield code="0">(DE-588)4055762-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Graphentheoretisches Modell</subfield><subfield code="0">(DE-588)4158055-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Netzplantechnik</subfield><subfield code="0">(DE-588)4075297-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9780691188331</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031262231</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691188331?locatt=mode:legacy</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691188331?locatt=mode:legacy</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691188331?locatt=mode:legacy</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691188331?locatt=mode:legacy</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691188331?locatt=mode:legacy</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691188331?locatt=mode:legacy</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045879054 |
illustrated | Not Illustrated |
indexdate | 2025-02-19T17:24:42Z |
institution | BVB |
isbn | 9780691188331 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031262231 |
oclc_num | 1101912801 |
open_access_boolean | |
owner | DE-859 DE-860 DE-739 DE-1046 DE-1043 DE-858 |
owner_facet | DE-859 DE-860 DE-739 DE-1046 DE-1043 DE-858 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FCO_PDA_DGG |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Princeton University Press |
record_format | marc |
series2 | Princeton Studies in Complexity |
spelling | Watts, Duncan J. Verfasser aut Small Worlds The Dynamics of Networks between Order and Randomness Duncan J. Watts Princeton, NJ Princeton University Press [2018] © 1999 1 online resource txt rdacontent c rdamedia cr rdacarrier Princeton Studies in Complexity 9 Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Nov 2018) Everyone knows the small-world phenomenon: soon after meeting a stranger, we are surprised to discover that we have a mutual friend, or we are connected through a short chain of acquaintances. In his book, Duncan Watts uses this intriguing phenomenon--colloquially called "six degrees of separation"--as a prelude to a more general exploration: under what conditions can a small world arise in any kind of network? The networks of this story are everywhere: the brain is a network of neurons; organisations are people networks; the global economy is a network of national economies, which are networks of markets, which are in turn networks of interacting producers and consumers. Food webs, ecosystems, and the Internet can all be represented as networks, as can strategies for solving a problem, topics in a conversation, and even words in a language. Many of these networks, the author claims, will turn out to be small worlds. How do such networks matter? Simply put, local actions can have global consequences, and the relationship between local and global dynamics depends critically on the network's structure. Watts illustrates the subtleties of this relationship using a variety of simple models---the spread of infectious disease through a structured population; the evolution of cooperation in game theory; the computational capacity of cellular automata; and the sychronisation of coupled phase-oscillators. Watts's novel approach is relevant to many problems that deal with network connectivity and complex systems' behaviour in general: How do diseases (or rumours) spread through social networks? How does cooperation evolve in large groups? How do cascading failures propagate through large power grids, or financial systems? What is the most efficient architecture for an organisation, or for a communications network? This fascinating exploration will be fruitful in a remarkable variety of fields, including physics and mathematics, as well as sociology, economics, and biology In English Graph theory Network analysis (Planning) Social networks Mathematical models Graphentheorie (DE-588)4113782-6 gnd rswk-swf Soziales Netzwerk (DE-588)4055762-5 gnd rswk-swf Netzplantechnik (DE-588)4075297-5 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Graphentheoretisches Modell (DE-588)4158055-2 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Soziales Netzwerk (DE-588)4055762-5 s Graphentheorie (DE-588)4113782-6 s 1\p DE-604 Mathematisches Modell (DE-588)4114528-8 s 2\p DE-604 Stochastischer Prozess (DE-588)4057630-9 s 3\p DE-604 Graphentheoretisches Modell (DE-588)4158055-2 s 4\p DE-604 Netzplantechnik (DE-588)4075297-5 s 5\p DE-604 https://doi.org/10.1515/9780691188331 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Watts, Duncan J. Small Worlds The Dynamics of Networks between Order and Randomness Graph theory Network analysis (Planning) Social networks Mathematical models Graphentheorie (DE-588)4113782-6 gnd Soziales Netzwerk (DE-588)4055762-5 gnd Netzplantechnik (DE-588)4075297-5 gnd Mathematisches Modell (DE-588)4114528-8 gnd Graphentheoretisches Modell (DE-588)4158055-2 gnd Stochastischer Prozess (DE-588)4057630-9 gnd |
subject_GND | (DE-588)4113782-6 (DE-588)4055762-5 (DE-588)4075297-5 (DE-588)4114528-8 (DE-588)4158055-2 (DE-588)4057630-9 |
title | Small Worlds The Dynamics of Networks between Order and Randomness |
title_auth | Small Worlds The Dynamics of Networks between Order and Randomness |
title_exact_search | Small Worlds The Dynamics of Networks between Order and Randomness |
title_full | Small Worlds The Dynamics of Networks between Order and Randomness Duncan J. Watts |
title_fullStr | Small Worlds The Dynamics of Networks between Order and Randomness Duncan J. Watts |
title_full_unstemmed | Small Worlds The Dynamics of Networks between Order and Randomness Duncan J. Watts |
title_short | Small Worlds |
title_sort | small worlds the dynamics of networks between order and randomness |
title_sub | The Dynamics of Networks between Order and Randomness |
topic | Graph theory Network analysis (Planning) Social networks Mathematical models Graphentheorie (DE-588)4113782-6 gnd Soziales Netzwerk (DE-588)4055762-5 gnd Netzplantechnik (DE-588)4075297-5 gnd Mathematisches Modell (DE-588)4114528-8 gnd Graphentheoretisches Modell (DE-588)4158055-2 gnd Stochastischer Prozess (DE-588)4057630-9 gnd |
topic_facet | Graph theory Network analysis (Planning) Social networks Mathematical models Graphentheorie Soziales Netzwerk Netzplantechnik Mathematisches Modell Graphentheoretisches Modell Stochastischer Prozess |
url | https://doi.org/10.1515/9780691188331 |
work_keys_str_mv | AT wattsduncanj smallworldsthedynamicsofnetworksbetweenorderandrandomness |