Demographic Forecasting:
Demographic Forecasting introduces new statistical tools that can greatly improve forecasts of population death rates. Mortality forecasting is used in a wide variety of academic fields, and for policymaking in global health, social security and retirement planning, and other areas. Federico Girosi...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[2018]
|
Schlagworte: | |
Online-Zugang: | DE-859 DE-860 DE-739 DE-473 DE-1046 DE-1043 DE-858 Volltext |
Zusammenfassung: | Demographic Forecasting introduces new statistical tools that can greatly improve forecasts of population death rates. Mortality forecasting is used in a wide variety of academic fields, and for policymaking in global health, social security and retirement planning, and other areas. Federico Girosi and Gary King provide an innovative framework for forecasting age-sex-country-cause-specific variables that makes it possible to incorporate more information than standard approaches. These new methods more generally make it possible to include different explanatory variables in a time-series regression for each cross section while still borrowing strength from one regression to improve the estimation of all. The authors show that many existing Bayesian models with explanatory variables use prior densities that incorrectly formalize prior knowledge, and they show how to avoid these problems. They also explain how to incorporate a great deal of demographic knowledge into models with many fewer adjustable parameters than classic Bayesian approaches, and develop models with Bayesian priors in the presence of partial prior ignorance. By showing how to include more information in statistical models, Demographic Forecasting carries broad statistical implications for social scientists, statisticians, demographers, public-health experts, policymakers, and industry analysts. Introduces methods to improve forecasts of mortality rates and similar variables Provides innovative tools for more effective statistical modeling Makes available free open-source software and replication data Includes full-color graphics, a complete glossary of symbols, a self-contained math refresher, and more |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Nov 2018) |
Beschreibung: | 1 online resource |
ISBN: | 9780691186788 |
DOI: | 10.1515/9780691186788 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV045878911 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 190515s2018 xx o|||| 00||| eng d | ||
020 | |a 9780691186788 |9 978-0-691-18678-8 | ||
024 | 7 | |a 10.1515/9780691186788 |2 doi | |
035 | |a (ZDB-23-DGG)9780691186788 | ||
035 | |a (OCoLC)1165490137 | ||
035 | |a (DE-599)BVBBV045878911 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-739 |a DE-473 |a DE-1046 |a DE-1043 |a DE-858 | ||
082 | 0 | |a 304.6/40112 |2 22 | |
100 | 1 | |a Girosi, Federico |e Verfasser |4 aut | |
245 | 1 | 0 | |a Demographic Forecasting |c Federico Girosi, Gary King |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [2018] | |
264 | 4 | |c © 2008 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Nov 2018) | ||
520 | |a Demographic Forecasting introduces new statistical tools that can greatly improve forecasts of population death rates. Mortality forecasting is used in a wide variety of academic fields, and for policymaking in global health, social security and retirement planning, and other areas. Federico Girosi and Gary King provide an innovative framework for forecasting age-sex-country-cause-specific variables that makes it possible to incorporate more information than standard approaches. These new methods more generally make it possible to include different explanatory variables in a time-series regression for each cross section while still borrowing strength from one regression to improve the estimation of all. The authors show that many existing Bayesian models with explanatory variables use prior densities that incorrectly formalize prior knowledge, and they show how to avoid these problems. They also explain how to incorporate a great deal of demographic knowledge into models with many fewer adjustable parameters than classic Bayesian approaches, and develop models with Bayesian priors in the presence of partial prior ignorance. By showing how to include more information in statistical models, Demographic Forecasting carries broad statistical implications for social scientists, statisticians, demographers, public-health experts, policymakers, and industry analysts. Introduces methods to improve forecasts of mortality rates and similar variables Provides innovative tools for more effective statistical modeling Makes available free open-source software and replication data Includes full-color graphics, a complete glossary of symbols, a self-contained math refresher, and more | ||
546 | |a In English | ||
648 | 7 | |a Prognose |2 gnd |9 rswk-swf | |
650 | 4 | |a Demography | |
650 | 4 | |a Mortality |x Forecasting |x Methodology | |
650 | 4 | |a Mortality |x Statistical methods | |
650 | 0 | 7 | |a Methodologie |0 (DE-588)4139716-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sterblichkeit |0 (DE-588)4057312-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prozess |0 (DE-588)4047577-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sterbeziffer |0 (DE-588)4267244-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Demographie |0 (DE-588)4011412-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Demographie |0 (DE-588)4011412-0 |D s |
689 | 0 | 1 | |a Sterbeziffer |0 (DE-588)4267244-2 |D s |
689 | 0 | 2 | |a Prognose |A z |
689 | 0 | 3 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Demographie |0 (DE-588)4011412-0 |D s |
689 | 1 | 1 | |a Sterblichkeit |0 (DE-588)4057312-6 |D s |
689 | 1 | 2 | |a Prozess |0 (DE-588)4047577-3 |D s |
689 | 1 | 3 | |a Methodologie |0 (DE-588)4139716-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a King, Gary |4 aut | |
856 | 4 | 0 | |u https://doi.org/10.1515/9780691186788 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-23-DGG | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-031262088 | |
966 | e | |u https://doi.org/10.1515/9780691186788?locatt=mode:legacy |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691186788?locatt=mode:legacy |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691186788?locatt=mode:legacy |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691186788?locatt=mode:legacy |l DE-473 |p ZDB-23-DGG |q UBG_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691186788?locatt=mode:legacy |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691186788?locatt=mode:legacy |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691186788?locatt=mode:legacy |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1824507436639191040 |
---|---|
adam_text | |
any_adam_object | |
author | Girosi, Federico King, Gary |
author_facet | Girosi, Federico King, Gary |
author_role | aut aut |
author_sort | Girosi, Federico |
author_variant | f g fg g k gk |
building | Verbundindex |
bvnumber | BV045878911 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9780691186788 (OCoLC)1165490137 (DE-599)BVBBV045878911 |
dewey-full | 304.6/40112 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 304 - Factors affecting social behavior |
dewey-raw | 304.6/40112 |
dewey-search | 304.6/40112 |
dewey-sort | 3304.6 540112 |
dewey-tens | 300 - Social sciences |
discipline | Soziologie |
doi_str_mv | 10.1515/9780691186788 |
era | Prognose gnd |
era_facet | Prognose |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV045878911</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190515s2018 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691186788</subfield><subfield code="9">978-0-691-18678-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9780691186788</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9780691186788</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165490137</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045878911</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">304.6/40112</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Girosi, Federico</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Demographic Forecasting</subfield><subfield code="c">Federico Girosi, Gary King</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Nov 2018)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Demographic Forecasting introduces new statistical tools that can greatly improve forecasts of population death rates. Mortality forecasting is used in a wide variety of academic fields, and for policymaking in global health, social security and retirement planning, and other areas. Federico Girosi and Gary King provide an innovative framework for forecasting age-sex-country-cause-specific variables that makes it possible to incorporate more information than standard approaches. These new methods more generally make it possible to include different explanatory variables in a time-series regression for each cross section while still borrowing strength from one regression to improve the estimation of all. The authors show that many existing Bayesian models with explanatory variables use prior densities that incorrectly formalize prior knowledge, and they show how to avoid these problems. They also explain how to incorporate a great deal of demographic knowledge into models with many fewer adjustable parameters than classic Bayesian approaches, and develop models with Bayesian priors in the presence of partial prior ignorance. By showing how to include more information in statistical models, Demographic Forecasting carries broad statistical implications for social scientists, statisticians, demographers, public-health experts, policymakers, and industry analysts. Introduces methods to improve forecasts of mortality rates and similar variables Provides innovative tools for more effective statistical modeling Makes available free open-source software and replication data Includes full-color graphics, a complete glossary of symbols, a self-contained math refresher, and more</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Prognose</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Demography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mortality</subfield><subfield code="x">Forecasting</subfield><subfield code="x">Methodology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mortality</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Methodologie</subfield><subfield code="0">(DE-588)4139716-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sterblichkeit</subfield><subfield code="0">(DE-588)4057312-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prozess</subfield><subfield code="0">(DE-588)4047577-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sterbeziffer</subfield><subfield code="0">(DE-588)4267244-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Demographie</subfield><subfield code="0">(DE-588)4011412-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Demographie</subfield><subfield code="0">(DE-588)4011412-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Sterbeziffer</subfield><subfield code="0">(DE-588)4267244-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Prognose</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Demographie</subfield><subfield code="0">(DE-588)4011412-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Sterblichkeit</subfield><subfield code="0">(DE-588)4057312-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Prozess</subfield><subfield code="0">(DE-588)4047577-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Methodologie</subfield><subfield code="0">(DE-588)4139716-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">King, Gary</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9780691186788</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031262088</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691186788?locatt=mode:legacy</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691186788?locatt=mode:legacy</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691186788?locatt=mode:legacy</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691186788?locatt=mode:legacy</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UBG_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691186788?locatt=mode:legacy</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691186788?locatt=mode:legacy</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691186788?locatt=mode:legacy</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045878911 |
illustrated | Not Illustrated |
indexdate | 2025-02-19T17:24:42Z |
institution | BVB |
isbn | 9780691186788 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031262088 |
oclc_num | 1165490137 |
open_access_boolean | |
owner | DE-859 DE-860 DE-739 DE-473 DE-BY-UBG DE-1046 DE-1043 DE-858 |
owner_facet | DE-859 DE-860 DE-739 DE-473 DE-BY-UBG DE-1046 DE-1043 DE-858 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG UBG_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FCO_PDA_DGG |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Princeton University Press |
record_format | marc |
spelling | Girosi, Federico Verfasser aut Demographic Forecasting Federico Girosi, Gary King Princeton, NJ Princeton University Press [2018] © 2008 1 online resource txt rdacontent c rdamedia cr rdacarrier Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Nov 2018) Demographic Forecasting introduces new statistical tools that can greatly improve forecasts of population death rates. Mortality forecasting is used in a wide variety of academic fields, and for policymaking in global health, social security and retirement planning, and other areas. Federico Girosi and Gary King provide an innovative framework for forecasting age-sex-country-cause-specific variables that makes it possible to incorporate more information than standard approaches. These new methods more generally make it possible to include different explanatory variables in a time-series regression for each cross section while still borrowing strength from one regression to improve the estimation of all. The authors show that many existing Bayesian models with explanatory variables use prior densities that incorrectly formalize prior knowledge, and they show how to avoid these problems. They also explain how to incorporate a great deal of demographic knowledge into models with many fewer adjustable parameters than classic Bayesian approaches, and develop models with Bayesian priors in the presence of partial prior ignorance. By showing how to include more information in statistical models, Demographic Forecasting carries broad statistical implications for social scientists, statisticians, demographers, public-health experts, policymakers, and industry analysts. Introduces methods to improve forecasts of mortality rates and similar variables Provides innovative tools for more effective statistical modeling Makes available free open-source software and replication data Includes full-color graphics, a complete glossary of symbols, a self-contained math refresher, and more In English Prognose gnd rswk-swf Demography Mortality Forecasting Methodology Mortality Statistical methods Methodologie (DE-588)4139716-2 gnd rswk-swf Sterblichkeit (DE-588)4057312-6 gnd rswk-swf Prozess (DE-588)4047577-3 gnd rswk-swf Sterbeziffer (DE-588)4267244-2 gnd rswk-swf Demographie (DE-588)4011412-0 gnd rswk-swf Statistik (DE-588)4056995-0 gnd rswk-swf Demographie (DE-588)4011412-0 s Sterbeziffer (DE-588)4267244-2 s Prognose z Statistik (DE-588)4056995-0 s 1\p DE-604 Sterblichkeit (DE-588)4057312-6 s Prozess (DE-588)4047577-3 s Methodologie (DE-588)4139716-2 s 2\p DE-604 King, Gary aut https://doi.org/10.1515/9780691186788 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Girosi, Federico King, Gary Demographic Forecasting Demography Mortality Forecasting Methodology Mortality Statistical methods Methodologie (DE-588)4139716-2 gnd Sterblichkeit (DE-588)4057312-6 gnd Prozess (DE-588)4047577-3 gnd Sterbeziffer (DE-588)4267244-2 gnd Demographie (DE-588)4011412-0 gnd Statistik (DE-588)4056995-0 gnd |
subject_GND | (DE-588)4139716-2 (DE-588)4057312-6 (DE-588)4047577-3 (DE-588)4267244-2 (DE-588)4011412-0 (DE-588)4056995-0 |
title | Demographic Forecasting |
title_auth | Demographic Forecasting |
title_exact_search | Demographic Forecasting |
title_full | Demographic Forecasting Federico Girosi, Gary King |
title_fullStr | Demographic Forecasting Federico Girosi, Gary King |
title_full_unstemmed | Demographic Forecasting Federico Girosi, Gary King |
title_short | Demographic Forecasting |
title_sort | demographic forecasting |
topic | Demography Mortality Forecasting Methodology Mortality Statistical methods Methodologie (DE-588)4139716-2 gnd Sterblichkeit (DE-588)4057312-6 gnd Prozess (DE-588)4047577-3 gnd Sterbeziffer (DE-588)4267244-2 gnd Demographie (DE-588)4011412-0 gnd Statistik (DE-588)4056995-0 gnd |
topic_facet | Demography Mortality Forecasting Methodology Mortality Statistical methods Methodologie Sterblichkeit Prozess Sterbeziffer Demographie Statistik |
url | https://doi.org/10.1515/9780691186788 |
work_keys_str_mv | AT girosifederico demographicforecasting AT kinggary demographicforecasting |