Statistical data science:
2. Probabilistic Numerical Methods2.1. What is probabilistic numerics?; 2.2. The future of probabilistic numerics; 3. Conclusion; Acknowledgements; References; 7. Phylogenetic Gaussian Processes for Bat Echolocation; 1. Introduction; 2. Echolocation Calls as Function-Valued Traits; 3. Phylogenetic G...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo
World Scientific
[2018]
|
Schlagworte: | |
Online-Zugang: | FWS01 FWS02 TUM01 UBY01 |
Zusammenfassung: | 2. Probabilistic Numerical Methods2.1. What is probabilistic numerics?; 2.2. The future of probabilistic numerics; 3. Conclusion; Acknowledgements; References; 7. Phylogenetic Gaussian Processes for Bat Echolocation; 1. Introduction; 2. Echolocation Calls as Function-Valued Traits; 3. Phylogenetic Gaussian Processes; 4. Results; 4.1. Data description; 4.2. Hyperparameter estimation and ancestral trait reconstruction with phylogenetic Gaussian processes; 5. Conclusions and Further Work; Acknowledgement; References 3.2. L-kernel density estimation3.2.1. Choice of L-kernel; 3.2.2. Relationship to the existing literature; 4. Marginal Likelihood Estimation; 4.1. L-kernel estimation of marginal likelihood; 4.2. Mixture modelling; 4.2.1. Likelihood; 4.2.2. Prior distribution; 4.2.3. Label switching; 4.3. Inference; 4.4. Example: Galaxy data; 5. Discussion; Acknowledgements; References; 6. Bayesian Numerical Methods as a Case Study for Statistical Data Science; 1. The Rise of Data Science; 1.1. Data science: Does it matter, or is it all hype?; 1.2. Nightmares and opportunities for statisticians 3. Evaluating Statistical and Machine Learning Supervised Classification Methods1. Introduction; 2. Performance Measures; 2.1. Measures based on the classification table; 2.2. Choosing the classification threshold; 2.2.1. Misclassification rate; 2.2.2. Kolmogorov-Smirnov measure; 2.2.3. Given misclassification costs; 2.2.4. The F-measure; 2.3. Distributions of misclassification costs; 2.3.1. The H-measure; 2.3.2. Screening; 3. Conclusion; References; 4. Diversity as a Response to User Preference Uncertainty; 1. Introduction; 2. Problem Formulation; 3. Solution Method; 4. Simulation Study |
Beschreibung: | 1 Online-Ressource |
ISBN: | 1786345404 9781786345400 9781786345417 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV045871237 | ||
003 | DE-604 | ||
005 | 20220112 | ||
006 | a |||| 10||| | ||
007 | cr|uuu---uuuuu | ||
008 | 190510s2018 |||| o||u| ||||||eng d | ||
020 | |a 1786345404 |c electronic bk |9 1-78634-540-4 | ||
020 | |a 9781786345400 |c Online |9 978-1-78634-540-0 | ||
020 | |a 9781786345417 |c Online |9 978-1-78634-541-7 | ||
024 | 7 | |a 10.1142/q0159 |2 doi | |
035 | |a (OCoLC)1103483220 | ||
035 | |a (DE-599)GBV1026391016 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-863 |a DE-862 |a DE-706 |a DE-91 | ||
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
084 | |a SK 840 |0 (DE-625)143261: |2 rvk | ||
084 | |a MAT 620f |2 stub | ||
245 | 1 | 0 | |a Statistical data science |c Editors Niall Adams, Ed Cohen, Imperial College London, UK |
264 | 1 | |a New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo |b World Scientific |c [2018] | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a 2. Probabilistic Numerical Methods2.1. What is probabilistic numerics?; 2.2. The future of probabilistic numerics; 3. Conclusion; Acknowledgements; References; 7. Phylogenetic Gaussian Processes for Bat Echolocation; 1. Introduction; 2. Echolocation Calls as Function-Valued Traits; 3. Phylogenetic Gaussian Processes; 4. Results; 4.1. Data description; 4.2. Hyperparameter estimation and ancestral trait reconstruction with phylogenetic Gaussian processes; 5. Conclusions and Further Work; Acknowledgement; References | |
520 | 3 | |a 3.2. L-kernel density estimation3.2.1. Choice of L-kernel; 3.2.2. Relationship to the existing literature; 4. Marginal Likelihood Estimation; 4.1. L-kernel estimation of marginal likelihood; 4.2. Mixture modelling; 4.2.1. Likelihood; 4.2.2. Prior distribution; 4.2.3. Label switching; 4.3. Inference; 4.4. Example: Galaxy data; 5. Discussion; Acknowledgements; References; 6. Bayesian Numerical Methods as a Case Study for Statistical Data Science; 1. The Rise of Data Science; 1.1. Data science: Does it matter, or is it all hype?; 1.2. Nightmares and opportunities for statisticians | |
520 | 3 | |a 3. Evaluating Statistical and Machine Learning Supervised Classification Methods1. Introduction; 2. Performance Measures; 2.1. Measures based on the classification table; 2.2. Choosing the classification threshold; 2.2.1. Misclassification rate; 2.2.2. Kolmogorov-Smirnov measure; 2.2.3. Given misclassification costs; 2.2.4. The F-measure; 2.3. Distributions of misclassification costs; 2.3.1. The H-measure; 2.3.2. Screening; 3. Conclusion; References; 4. Diversity as a Response to User Preference Uncertainty; 1. Introduction; 2. Problem Formulation; 3. Solution Method; 4. Simulation Study | |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 2017 |z London |2 gnd-content | |
689 | 0 | 0 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | 1 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Adams, Niall M. |d 1968- |0 (DE-588)1089491379 |4 edt | |
700 | 1 | |a Cohen, Edward |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-78634-539-4 |
912 | |a ZDB-4-NLEBK |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031254569 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1142/q0159 |l FWS01 |p ZDB-124-WOP |q FWS_PDA_WOP_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1142/q0159 |l FWS02 |p ZDB-124-WOP |q FWS_PDA_WOP_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1142/q0159 |l TUM01 |p ZDB-124-WOP |q TUM_Einzelkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1142/q0159 |l UBY01 |p ZDB-124-WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 757063 |
---|---|
_version_ | 1806191158350577664 |
any_adam_object | |
author2 | Adams, Niall M. 1968- Cohen, Edward |
author2_role | edt edt |
author2_variant | n m a nm nma e c ec |
author_GND | (DE-588)1089491379 |
author_facet | Adams, Niall M. 1968- Cohen, Edward |
building | Verbundindex |
bvnumber | BV045871237 |
classification_rvk | SK 830 SK 840 |
classification_tum | MAT 620f |
collection | ZDB-4-NLEBK ZDB-124-WOP |
ctrlnum | (OCoLC)1103483220 (DE-599)GBV1026391016 |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03989nmm a2200553 c 4500</leader><controlfield tag="001">BV045871237</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220112 </controlfield><controlfield tag="006">a |||| 10||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190510s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1786345404</subfield><subfield code="c">electronic bk</subfield><subfield code="9">1-78634-540-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781786345400</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-78634-540-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781786345417</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-78634-541-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/q0159</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1103483220</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV1026391016</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 620f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical data science</subfield><subfield code="c">Editors Niall Adams, Ed Cohen, Imperial College London, UK</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">2. Probabilistic Numerical Methods2.1. What is probabilistic numerics?; 2.2. The future of probabilistic numerics; 3. Conclusion; Acknowledgements; References; 7. Phylogenetic Gaussian Processes for Bat Echolocation; 1. Introduction; 2. Echolocation Calls as Function-Valued Traits; 3. Phylogenetic Gaussian Processes; 4. Results; 4.1. Data description; 4.2. Hyperparameter estimation and ancestral trait reconstruction with phylogenetic Gaussian processes; 5. Conclusions and Further Work; Acknowledgement; References</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">3.2. L-kernel density estimation3.2.1. Choice of L-kernel; 3.2.2. Relationship to the existing literature; 4. Marginal Likelihood Estimation; 4.1. L-kernel estimation of marginal likelihood; 4.2. Mixture modelling; 4.2.1. Likelihood; 4.2.2. Prior distribution; 4.2.3. Label switching; 4.3. Inference; 4.4. Example: Galaxy data; 5. Discussion; Acknowledgements; References; 6. Bayesian Numerical Methods as a Case Study for Statistical Data Science; 1. The Rise of Data Science; 1.1. Data science: Does it matter, or is it all hype?; 1.2. Nightmares and opportunities for statisticians</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">3. Evaluating Statistical and Machine Learning Supervised Classification Methods1. Introduction; 2. Performance Measures; 2.1. Measures based on the classification table; 2.2. Choosing the classification threshold; 2.2.1. Misclassification rate; 2.2.2. Kolmogorov-Smirnov measure; 2.2.3. Given misclassification costs; 2.2.4. The F-measure; 2.3. Distributions of misclassification costs; 2.3.1. The H-measure; 2.3.2. Screening; 3. Conclusion; References; 4. Diversity as a Response to User Preference Uncertainty; 1. Introduction; 2. Problem Formulation; 3. Solution Method; 4. Simulation Study</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2017</subfield><subfield code="z">London</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adams, Niall M.</subfield><subfield code="d">1968-</subfield><subfield code="0">(DE-588)1089491379</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cohen, Edward</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-78634-539-4</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-NLEBK</subfield><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031254569</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/q0159</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FWS_PDA_WOP_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/q0159</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FWS_PDA_WOP_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/q0159</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/q0159</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 2017 London gnd-content |
genre_facet | Konferenzschrift 2017 London |
id | DE-604.BV045871237 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T15:15:17Z |
institution | BVB |
isbn | 1786345404 9781786345400 9781786345417 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031254569 |
oclc_num | 1103483220 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-706 DE-91 DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-706 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-4-NLEBK ZDB-124-WOP ZDB-124-WOP FWS_PDA_WOP_Kauf ZDB-124-WOP TUM_Einzelkauf |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | World Scientific |
record_format | marc |
spellingShingle | Statistical data science Statistik (DE-588)4056995-0 gnd Data Mining (DE-588)4428654-5 gnd |
subject_GND | (DE-588)4056995-0 (DE-588)4428654-5 (DE-588)1071861417 |
title | Statistical data science |
title_auth | Statistical data science |
title_exact_search | Statistical data science |
title_full | Statistical data science Editors Niall Adams, Ed Cohen, Imperial College London, UK |
title_fullStr | Statistical data science Editors Niall Adams, Ed Cohen, Imperial College London, UK |
title_full_unstemmed | Statistical data science Editors Niall Adams, Ed Cohen, Imperial College London, UK |
title_short | Statistical data science |
title_sort | statistical data science |
topic | Statistik (DE-588)4056995-0 gnd Data Mining (DE-588)4428654-5 gnd |
topic_facet | Statistik Data Mining Konferenzschrift 2017 London |
work_keys_str_mv | AT adamsniallm statisticaldatascience AT cohenedward statisticaldatascience |