Statistical data science:

2. Probabilistic Numerical Methods2.1. What is probabilistic numerics?; 2.2. The future of probabilistic numerics; 3. Conclusion; Acknowledgements; References; 7. Phylogenetic Gaussian Processes for Bat Echolocation; 1. Introduction; 2. Echolocation Calls as Function-Valued Traits; 3. Phylogenetic G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Adams, Niall M. 1968- (HerausgeberIn), Cohen, Edward (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo World Scientific [2018]
Schlagworte:
Online-Zugang:FWS01
FWS02
TUM01
UBY01
Zusammenfassung:2. Probabilistic Numerical Methods2.1. What is probabilistic numerics?; 2.2. The future of probabilistic numerics; 3. Conclusion; Acknowledgements; References; 7. Phylogenetic Gaussian Processes for Bat Echolocation; 1. Introduction; 2. Echolocation Calls as Function-Valued Traits; 3. Phylogenetic Gaussian Processes; 4. Results; 4.1. Data description; 4.2. Hyperparameter estimation and ancestral trait reconstruction with phylogenetic Gaussian processes; 5. Conclusions and Further Work; Acknowledgement; References
3.2. L-kernel density estimation3.2.1. Choice of L-kernel; 3.2.2. Relationship to the existing literature; 4. Marginal Likelihood Estimation; 4.1. L-kernel estimation of marginal likelihood; 4.2. Mixture modelling; 4.2.1. Likelihood; 4.2.2. Prior distribution; 4.2.3. Label switching; 4.3. Inference; 4.4. Example: Galaxy data; 5. Discussion; Acknowledgements; References; 6. Bayesian Numerical Methods as a Case Study for Statistical Data Science; 1. The Rise of Data Science; 1.1. Data science: Does it matter, or is it all hype?; 1.2. Nightmares and opportunities for statisticians
3. Evaluating Statistical and Machine Learning Supervised Classification Methods1. Introduction; 2. Performance Measures; 2.1. Measures based on the classification table; 2.2. Choosing the classification threshold; 2.2.1. Misclassification rate; 2.2.2. Kolmogorov-Smirnov measure; 2.2.3. Given misclassification costs; 2.2.4. The F-measure; 2.3. Distributions of misclassification costs; 2.3.1. The H-measure; 2.3.2. Screening; 3. Conclusion; References; 4. Diversity as a Response to User Preference Uncertainty; 1. Introduction; 2. Problem Formulation; 3. Solution Method; 4. Simulation Study
Beschreibung:1 Online-Ressource
ISBN:1786345404
9781786345400
9781786345417