Machine learning in advanced driver-assistance systems: Contributions to pedestrian detection and adversarial modeling
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Logos Berlin
2019
|
Schriftenreihe: | Studien zur Mustererkennung
Band 47 |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | 137 Seiten 21 cm x 14.5 cm |
ISBN: | 9783832548742 3832548742 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV045863908 | ||
003 | DE-604 | ||
005 | 20191112 | ||
007 | t | ||
008 | 190507s2019 gw m||| 00||| eng d | ||
015 | |a 19,N14 |2 dnb | ||
016 | 7 | |a 1181888921 |2 DE-101 | |
020 | |a 9783832548742 |c Broschur : EUR 40.50 (DE), EUR 41.60 (AT) |9 978-3-8325-4874-2 | ||
020 | |a 3832548742 |9 3-8325-4874-2 | ||
024 | 3 | |a 9783832548742 | |
035 | |a (OCoLC)1101132502 | ||
035 | |a (DE-599)DNB1181888921 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-573 |a DE-898 | ||
084 | |a ZO 4260 |0 (DE-625)157720: |2 rvk | ||
084 | |a 004 |2 sdnb | ||
100 | 1 | |a Ghorban, Farzin |e Verfasser |0 (DE-588)1184632812 |4 aut | |
245 | 1 | 0 | |a Machine learning in advanced driver-assistance systems |b Contributions to pedestrian detection and adversarial modeling |c Farzin Ghorban Rajabizadeh |
264 | 1 | |a Berlin |b Logos Berlin |c 2019 | |
300 | |a 137 Seiten |c 21 cm x 14.5 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Studien zur Mustererkennung |v Band 47 | |
502 | |b Dissertation |c Bergische Universität Wuppertal | ||
650 | 0 | 7 | |a Fahrerassistenzsystem |0 (DE-588)4622983-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fußgänger |0 (DE-588)4140907-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Objekterkennung |0 (DE-588)4314334-9 |2 gnd |9 rswk-swf |
653 | |a Deep Learning | ||
653 | |a Neural Networks | ||
653 | |a Machine Learning | ||
653 | |a Objekterkennung | ||
653 | |a Representation Learning | ||
653 | |a Bergische Universität Wuppertal | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Fahrerassistenzsystem |0 (DE-588)4622983-8 |D s |
689 | 0 | 1 | |a Objekterkennung |0 (DE-588)4314334-9 |D s |
689 | 0 | 2 | |a Fußgänger |0 (DE-588)4140907-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Fahrerassistenzsystem |0 (DE-588)4622983-8 |D s |
689 | 1 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | |5 DE-604 | |
710 | 2 | |a Logos Verlag Berlin |0 (DE-588)1065538812 |4 pbl | |
830 | 0 | |a Studien zur Mustererkennung |v Band 47 |w (DE-604)BV013645858 |9 47 | |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=ed0560b83cbe46128b53d7f573a975c8&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031247346&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-031247346 |
Datensatz im Suchindex
_version_ | 1804180002964504576 |
---|---|
adam_text | CONTENTS
1
INTRODUCTION
1
2
MACHINE
LEARNING
FOR
OBJECT
DETECTION
5
2.1
INTRODUCTION
................................................................................
5
2.2
MACHINE
LEARNING
.......................................................................
7
2.2.1
ENSEMBLE
LEARNING
.......................................................
8
2.2.2
CONNECTIONISM
..............................................................
16
2.3
PROPOSAL
GENERATION
....................................................................
26
2.4
FEATURE
REPRESENTATION
.............................................................
28
2.5
CLUSTERING
THE
DETECTIONS
..........................................................
34
3
DATASETS
AND
METHODOLOGY
39
3.1
INTRODUCTION
................................................................................
39
3.2
PEDESTRIAN
DETECTION
................................................................
39
3.2.1
CALTECH
BENCHMARK
.......................................................
42
3.2.2
KITTI
BENCHMARK
..........................................................
44
3.3
TRAFFIC
SIGN
SAMPLES
....................................................................
45
4
AGGREGATED
CHANNELS
NETWORK
A
NOVEL
APPROACH
FOR
DETECTING
PEDESTRIANS
IN
REAL
TIME
47
4.1
MOTIVATION
..................................................................................
47
4.1.1
RELATED
WORK
.................................................................
48
4.1.2
CONTRIBUTION
.................................................................
49
IV
___________________________________________________
CONTENTS
4.2
AGGREGATED
CHANNEL
NETWORK
.....................................................
50
4.2.1
PROPOSAL
GENERATION
........................................................
50
4.2.2
PROPOSAL
EVALUATION
........................................................
51
4.3
IMPLEMENTATION
DETAILS
..............................................................
54
4.3.1
DATASET
..........................................................................
54
4.3.2
OPERATIONAL
POINT
...........................................................
54
4.3.3
COLLECTING
TRAINING
SET
..................................................
55
4.3.4
TRAINING
ACNET
..............................................................
57
4.3.5
EXTENDING
THE
PIPELINE
..................................................
58
4.3.6
IMPROVING
THE
QUALITY
OF
THE
PROPOSALS
......................
61
4.4
EXPERIMENTS
.................................................................................
64
4.4.1
COMPARISON
TO
THE
STATE-OF-THE-ART
METHODS
............
66
4.4.2
RUNTIME
ANALYSIS
...........................................................
69
4.5
EPILOGUE
.......................................................................................
71
5
INSATIATE
CASCADED
BOOSTED
FOREST
A
NOVEL
APPROACH
FOR
EXPLOITING
THE
ASYMMETRY
OF
THE
DATASET
73
5.1
MOTIVATION
....................................................................................
73
5.1.1
RELATED
WORK
.................................................................
75
5.1.2
CONTRIBUTION
.................................................................
77
5.2
ENSEMBLE
....................................................................................
77
5.2.1
DATASET
..........................................................................
77
5.2.2
SAMPLING
.......................................................................
78
5.2.3
MODEL
SETTINGS
.................................................................
79
5.3
EXPLOITING
THE
ASYMETRY
............................................................
80
5.3.1
PRELIMINARY
EXPERIMENT
..............................................
80
5.3.2
GREEDILY
BOOTSTRAPPING
..................................................
82
5.3.3
POSITIVE
MINING
..............................................................
83
CONTENTS
V
5.3.4
MODEL
PARAMETERS
............................................................
85
5.4
EXPERIMENTS
................................................................................
87
5.4.1
COMPARISON
TO
THE
STATE-OF-THE-ART
METHODS
..............
89
5.5
EPILOGUE
......................................................................................
92
6
CONDITIONAL
MULTICHANNEL
GENERATIVE
ADVERSARIAL
NETWORKS
A
NOVEL
APPROACH
FOR
GENERATING
SYNTHETIC
TRAFFIC
SIGNS
93
6.1
MOTIVATION
...................................................................................
93
6.1.1
RELATED
WORK
.................................................................
94
6.1.2
CONTRIBUTION
.................................................................
96
6.2
EVOLVING
THE
MODELING
FRAMEWORK
...........................................
97
6.2.1
INPUT
SIGNAL
....................................................................
97
6.2.2
GENERATIVE
ADVERSARIAL
NETWORKS
..................................
98
6.2.3
ARCHITECTURAL
DESIGN
....................................................
99
6.2.4
MULTICHANNEL
GANS
...........................................................
102
6.2.5
CONDITIONAL
MCGANS
.....................................................
103
6.3
EXPERIMENTS
...................................................................................
106
6.3.1
A
CLOSER
EXAMINATION
OF
SYNTHETIC
TRAFFIC
SIGNS
....
106
6.3.2
QUALITY
OF
THE
GENERATED
SAMPLES
..................................
109
6.3.3
PIXEL
TO
SUBPIXEL
GENERATOR
..............................................
110
6.4
EPILOGUE
..........................................................................................
112
7
CONCLUSION
AND
DISCUSSION
113
BIBLIOGRAPHY
119
|
any_adam_object | 1 |
author | Ghorban, Farzin |
author_GND | (DE-588)1184632812 |
author_facet | Ghorban, Farzin |
author_role | aut |
author_sort | Ghorban, Farzin |
author_variant | f g fg |
building | Verbundindex |
bvnumber | BV045863908 |
classification_rvk | ZO 4260 |
ctrlnum | (OCoLC)1101132502 (DE-599)DNB1181888921 |
discipline | Informatik Verkehr / Transport |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02640nam a22006258cb4500</leader><controlfield tag="001">BV045863908</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191112 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">190507s2019 gw m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">19,N14</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1181888921</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783832548742</subfield><subfield code="c">Broschur : EUR 40.50 (DE), EUR 41.60 (AT)</subfield><subfield code="9">978-3-8325-4874-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3832548742</subfield><subfield code="9">3-8325-4874-2</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783832548742</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1101132502</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1181888921</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZO 4260</subfield><subfield code="0">(DE-625)157720:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ghorban, Farzin</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1184632812</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning in advanced driver-assistance systems</subfield><subfield code="b">Contributions to pedestrian detection and adversarial modeling</subfield><subfield code="c">Farzin Ghorban Rajabizadeh</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Logos Berlin</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">137 Seiten</subfield><subfield code="c">21 cm x 14.5 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Studien zur Mustererkennung</subfield><subfield code="v">Band 47</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Bergische Universität Wuppertal</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fahrerassistenzsystem</subfield><subfield code="0">(DE-588)4622983-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fußgänger</subfield><subfield code="0">(DE-588)4140907-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Objekterkennung</subfield><subfield code="0">(DE-588)4314334-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Deep Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Neural Networks</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Objekterkennung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Representation Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bergische Universität Wuppertal</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fahrerassistenzsystem</subfield><subfield code="0">(DE-588)4622983-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Objekterkennung</subfield><subfield code="0">(DE-588)4314334-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Fußgänger</subfield><subfield code="0">(DE-588)4140907-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Fahrerassistenzsystem</subfield><subfield code="0">(DE-588)4622983-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Logos Verlag Berlin</subfield><subfield code="0">(DE-588)1065538812</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Studien zur Mustererkennung</subfield><subfield code="v">Band 47</subfield><subfield code="w">(DE-604)BV013645858</subfield><subfield code="9">47</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=ed0560b83cbe46128b53d7f573a975c8&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031247346&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031247346</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV045863908 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:28:50Z |
institution | BVB |
institution_GND | (DE-588)1065538812 |
isbn | 9783832548742 3832548742 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031247346 |
oclc_num | 1101132502 |
open_access_boolean | |
owner | DE-573 DE-898 DE-BY-UBR |
owner_facet | DE-573 DE-898 DE-BY-UBR |
physical | 137 Seiten 21 cm x 14.5 cm |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Logos Berlin |
record_format | marc |
series | Studien zur Mustererkennung |
series2 | Studien zur Mustererkennung |
spelling | Ghorban, Farzin Verfasser (DE-588)1184632812 aut Machine learning in advanced driver-assistance systems Contributions to pedestrian detection and adversarial modeling Farzin Ghorban Rajabizadeh Berlin Logos Berlin 2019 137 Seiten 21 cm x 14.5 cm txt rdacontent n rdamedia nc rdacarrier Studien zur Mustererkennung Band 47 Dissertation Bergische Universität Wuppertal Fahrerassistenzsystem (DE-588)4622983-8 gnd rswk-swf Fußgänger (DE-588)4140907-3 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Objekterkennung (DE-588)4314334-9 gnd rswk-swf Deep Learning Neural Networks Machine Learning Objekterkennung Representation Learning Bergische Universität Wuppertal (DE-588)4113937-9 Hochschulschrift gnd-content Fahrerassistenzsystem (DE-588)4622983-8 s Objekterkennung (DE-588)4314334-9 s Fußgänger (DE-588)4140907-3 s DE-604 Maschinelles Lernen (DE-588)4193754-5 s Logos Verlag Berlin (DE-588)1065538812 pbl Studien zur Mustererkennung Band 47 (DE-604)BV013645858 47 X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=ed0560b83cbe46128b53d7f573a975c8&prov=M&dok_var=1&dok_ext=htm Inhaltstext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031247346&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ghorban, Farzin Machine learning in advanced driver-assistance systems Contributions to pedestrian detection and adversarial modeling Studien zur Mustererkennung Fahrerassistenzsystem (DE-588)4622983-8 gnd Fußgänger (DE-588)4140907-3 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Objekterkennung (DE-588)4314334-9 gnd |
subject_GND | (DE-588)4622983-8 (DE-588)4140907-3 (DE-588)4193754-5 (DE-588)4314334-9 (DE-588)4113937-9 |
title | Machine learning in advanced driver-assistance systems Contributions to pedestrian detection and adversarial modeling |
title_auth | Machine learning in advanced driver-assistance systems Contributions to pedestrian detection and adversarial modeling |
title_exact_search | Machine learning in advanced driver-assistance systems Contributions to pedestrian detection and adversarial modeling |
title_full | Machine learning in advanced driver-assistance systems Contributions to pedestrian detection and adversarial modeling Farzin Ghorban Rajabizadeh |
title_fullStr | Machine learning in advanced driver-assistance systems Contributions to pedestrian detection and adversarial modeling Farzin Ghorban Rajabizadeh |
title_full_unstemmed | Machine learning in advanced driver-assistance systems Contributions to pedestrian detection and adversarial modeling Farzin Ghorban Rajabizadeh |
title_short | Machine learning in advanced driver-assistance systems |
title_sort | machine learning in advanced driver assistance systems contributions to pedestrian detection and adversarial modeling |
title_sub | Contributions to pedestrian detection and adversarial modeling |
topic | Fahrerassistenzsystem (DE-588)4622983-8 gnd Fußgänger (DE-588)4140907-3 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Objekterkennung (DE-588)4314334-9 gnd |
topic_facet | Fahrerassistenzsystem Fußgänger Maschinelles Lernen Objekterkennung Hochschulschrift |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=ed0560b83cbe46128b53d7f573a975c8&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031247346&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV013645858 |
work_keys_str_mv | AT ghorbanfarzin machinelearninginadvanceddriverassistancesystemscontributionstopedestriandetectionandadversarialmodeling AT logosverlagberlin machinelearninginadvanceddriverassistancesystemscontributionstopedestriandetectionandadversarialmodeling |