Introduction to chemical graph theory:
Cover -- Half Title -- Series Editors -- Title -- Copyrights -- Contents -- Preface -- Chapter 1 Preliminaries -- 1.1 Basic graph notations -- 1.2 Special types of graphs -- 1.3 Trees -- 1.4 Degrees in graphs -- 1.5 Distance in graphs -- 1.6 Independent sets and matchings -- 1.7 Topological indices...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
[2019]
|
Schriftenreihe: | Discrete mathematics and its applications series
|
Online-Zugang: | TUM01 |
Zusammenfassung: | Cover -- Half Title -- Series Editors -- Title -- Copyrights -- Contents -- Preface -- Chapter 1 Preliminaries -- 1.1 Basic graph notations -- 1.2 Special types of graphs -- 1.3 Trees -- 1.4 Degrees in graphs -- 1.5 Distance in graphs -- 1.6 Independent sets and matchings -- 1.7 Topological indices -- Chapter 2 Distance in graphs and the Wiener index -- 2.1 An overview -- 2.2 Properties related to distances -- 2.3 Extremal problems in general graphs and trees -- 2.3.1 The Wiener index -- 2.3.2 The distances between leaves -- 2.3.3 Distance between internal vertices -- 2.3.4 Distance between internal vertices and leaves -- 2.3.5 Sum of eccentricities -- 2.4 The Wiener index of trees with a given degree sequence -- 2.5 The Wiener index of trees with a given segment sequence . . -- 2.5.1 The minimum Wiener index in trees with a given seg-ment sequence -- 2.5.2 The maximum Wiener index in trees with a given seg-ment sequence -- 2.5.3 Further characterization of extremal quasi-caterpillars -- 2.5.4 Trees with a given number of segments -- 2.6 General approaches -- 2.6.1 Caterpillars -- 2.6.2 Greedy trees -- 2.6.3 Comparing greedy trees of different degree sequences and applications -- 2.7 The inverse problem -- Chapter 3 Vertex degrees and the Randic 'index -- 3.1 Introduction -- 3.2 Degree-based indices in trees with a given degree sequence . -- 3.2.1 Greedy trees -- 3.2.2 Alternating greedy trees -- 3.3 Comparison between greedy trees and applications -- 3.3.1 Between greedy trees -- 3.3.2 Applications to extremal trees -- 3.3.3 Application to specific indices -- 3.4 The Zagreb indices -- 3.4.1 Graphs with M1 = M2 -- 3.4.2 Maximum M2(·) −M1(·) in trees -- 3.4.3 Maximum M1(·) −M2(·) in trees -- 3.4.4 Further analysis of the behavior of M1() M2() -- 3.5 More on the ABC index -- 3.5.1 Defining the optimal graph 3.5.2 Structural properties of the optimal graphs -- 3.5.3 Proof of Theorem 3.5.1 -- 3.5.4 Acyclic, unicyclic, and bicyclic optimal graphs -- 3.6 Graphs with a given matching number -- 3.6.1 Generalized Randic 'index -- 3.6.2 Zagreb indices based on edge degrees -- 3.6.3 The Atom-bond connectivity index -- Chapter 4 Independent sets: Merrifield-Simmons index and Hosoya in- dex -- 4.1 History and terminologies -- 4.2 Merrifield-Simmons index and Hosoya index: elementary prop-erties -- 4.3 Extremal problems in general graphs and trees -- 4.4 Graph transformations -- 4.5 Trees with fixed parameters -- 4.6 Tree-like graphs -- 4.7 Independence polynomial and matching polynomial -- Chapter 5 Graph spectra and the graph energy -- 5.1 Matrices associated with graphs -- 5.2 Graph spectra and characteristic polynomials -- 5.3 The graph energy: elementary properties -- 5.4 Bounds for the graph energy -- 5.5 Extremal problems in trees -- 5.6 Extremal problems in tree-like graphs -- 5.7 Energy-like invariants -- 5.7.1 Matching energy -- 5.7.2 Laplacian energy -- 5.7.3 Incidence energy and Laplacian-energy-like invariant . -- 5.8 Other invariants based on graph spectra -- 5.8.1 Spectral radius of a graph -- 5.8.2 Estrada index -- Bibliography -- Index |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9780429833984 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV045678511 | ||
003 | DE-604 | ||
005 | 20190430 | ||
007 | cr|uuu---uuuuu | ||
008 | 190429s2019 |||| o||u| ||||||eng d | ||
020 | |a 9780429833984 |c Online |9 978-0-429-83398-4 | ||
035 | |a (OCoLC)1099877728 | ||
035 | |a (DE-599)GBV1031329218 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
084 | |a CHE 020f |2 stub | ||
084 | |a MAT 057f |2 stub | ||
100 | 1 | |a Wagner, Stephan |d 1982- |e Verfasser |0 (DE-588)1167802470 |4 aut | |
245 | 1 | 0 | |a Introduction to chemical graph theory |c Stephan Wagner, Hua Wang |
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c [2019] | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Discrete mathematics and its applications series | |
520 | 3 | |a Cover -- Half Title -- Series Editors -- Title -- Copyrights -- Contents -- Preface -- Chapter 1 Preliminaries -- 1.1 Basic graph notations -- 1.2 Special types of graphs -- 1.3 Trees -- 1.4 Degrees in graphs -- 1.5 Distance in graphs -- 1.6 Independent sets and matchings -- 1.7 Topological indices -- Chapter 2 Distance in graphs and the Wiener index -- 2.1 An overview -- 2.2 Properties related to distances -- 2.3 Extremal problems in general graphs and trees -- 2.3.1 The Wiener index -- 2.3.2 The distances between leaves -- 2.3.3 Distance between internal vertices -- 2.3.4 Distance between internal vertices and leaves -- 2.3.5 Sum of eccentricities -- 2.4 The Wiener index of trees with a given degree sequence -- 2.5 The Wiener index of trees with a given segment sequence . . -- 2.5.1 The minimum Wiener index in trees with a given seg-ment sequence -- 2.5.2 The maximum Wiener index in trees with a given seg-ment sequence -- 2.5.3 Further characterization of extremal quasi-caterpillars -- 2.5.4 Trees with a given number of segments -- 2.6 General approaches -- 2.6.1 Caterpillars -- 2.6.2 Greedy trees -- 2.6.3 Comparing greedy trees of different degree sequences and applications -- 2.7 The inverse problem -- Chapter 3 Vertex degrees and the Randic 'index -- 3.1 Introduction -- 3.2 Degree-based indices in trees with a given degree sequence . -- 3.2.1 Greedy trees -- 3.2.2 Alternating greedy trees -- 3.3 Comparison between greedy trees and applications -- 3.3.1 Between greedy trees -- 3.3.2 Applications to extremal trees -- 3.3.3 Application to specific indices -- 3.4 The Zagreb indices -- 3.4.1 Graphs with M1 = M2 -- 3.4.2 Maximum M2(·) −M1(·) in trees -- 3.4.3 Maximum M1(·) −M2(·) in trees -- 3.4.4 Further analysis of the behavior of M1() M2() -- 3.5 More on the ABC index -- 3.5.1 Defining the optimal graph | |
520 | 3 | |a 3.5.2 Structural properties of the optimal graphs -- 3.5.3 Proof of Theorem 3.5.1 -- 3.5.4 Acyclic, unicyclic, and bicyclic optimal graphs -- 3.6 Graphs with a given matching number -- 3.6.1 Generalized Randic 'index -- 3.6.2 Zagreb indices based on edge degrees -- 3.6.3 The Atom-bond connectivity index -- Chapter 4 Independent sets: Merrifield-Simmons index and Hosoya in- dex -- 4.1 History and terminologies -- 4.2 Merrifield-Simmons index and Hosoya index: elementary prop-erties -- 4.3 Extremal problems in general graphs and trees -- 4.4 Graph transformations -- 4.5 Trees with fixed parameters -- 4.6 Tree-like graphs -- 4.7 Independence polynomial and matching polynomial -- Chapter 5 Graph spectra and the graph energy -- 5.1 Matrices associated with graphs -- 5.2 Graph spectra and characteristic polynomials -- 5.3 The graph energy: elementary properties -- 5.4 Bounds for the graph energy -- 5.5 Extremal problems in trees -- 5.6 Extremal problems in tree-like graphs -- 5.7 Energy-like invariants -- 5.7.1 Matching energy -- 5.7.2 Laplacian energy -- 5.7.3 Incidence energy and Laplacian-energy-like invariant . -- 5.8 Other invariants based on graph spectra -- 5.8.1 Spectral radius of a graph -- 5.8.2 Estrada index -- Bibliography -- Index | |
700 | 1 | |a Wang, Hua |e Verfasser |0 (DE-588)1167805259 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |a Wagner, Stephan |t Introduction to Chemical Graph Theory |d Milton : Chapman and Hall/CRC,c2018 |n Druck-Ausgabe |z 978-1-138-32508-1 |
912 | |a ZDB-4-NLEBK | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031062027 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1893476 |l TUM01 |p ZDB-4-NLEBK |q TUM_Einzelkauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804179745100791808 |
---|---|
any_adam_object | |
author | Wagner, Stephan 1982- Wang, Hua |
author_GND | (DE-588)1167802470 (DE-588)1167805259 |
author_facet | Wagner, Stephan 1982- Wang, Hua |
author_role | aut aut |
author_sort | Wagner, Stephan 1982- |
author_variant | s w sw h w hw |
building | Verbundindex |
bvnumber | BV045678511 |
classification_tum | CHE 020f MAT 057f |
collection | ZDB-4-NLEBK |
ctrlnum | (OCoLC)1099877728 (DE-599)GBV1031329218 |
discipline | Chemie Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04462nmm a2200361 c 4500</leader><controlfield tag="001">BV045678511</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190430 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190429s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780429833984</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-429-83398-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1099877728</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV1031329218</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 020f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 057f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wagner, Stephan</subfield><subfield code="d">1982-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1167802470</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to chemical graph theory</subfield><subfield code="c">Stephan Wagner, Hua Wang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Discrete mathematics and its applications series</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Cover -- Half Title -- Series Editors -- Title -- Copyrights -- Contents -- Preface -- Chapter 1 Preliminaries -- 1.1 Basic graph notations -- 1.2 Special types of graphs -- 1.3 Trees -- 1.4 Degrees in graphs -- 1.5 Distance in graphs -- 1.6 Independent sets and matchings -- 1.7 Topological indices -- Chapter 2 Distance in graphs and the Wiener index -- 2.1 An overview -- 2.2 Properties related to distances -- 2.3 Extremal problems in general graphs and trees -- 2.3.1 The Wiener index -- 2.3.2 The distances between leaves -- 2.3.3 Distance between internal vertices -- 2.3.4 Distance between internal vertices and leaves -- 2.3.5 Sum of eccentricities -- 2.4 The Wiener index of trees with a given degree sequence -- 2.5 The Wiener index of trees with a given segment sequence . . -- 2.5.1 The minimum Wiener index in trees with a given seg-ment sequence -- 2.5.2 The maximum Wiener index in trees with a given seg-ment sequence -- 2.5.3 Further characterization of extremal quasi-caterpillars -- 2.5.4 Trees with a given number of segments -- 2.6 General approaches -- 2.6.1 Caterpillars -- 2.6.2 Greedy trees -- 2.6.3 Comparing greedy trees of different degree sequences and applications -- 2.7 The inverse problem -- Chapter 3 Vertex degrees and the Randic 'index -- 3.1 Introduction -- 3.2 Degree-based indices in trees with a given degree sequence . -- 3.2.1 Greedy trees -- 3.2.2 Alternating greedy trees -- 3.3 Comparison between greedy trees and applications -- 3.3.1 Between greedy trees -- 3.3.2 Applications to extremal trees -- 3.3.3 Application to specific indices -- 3.4 The Zagreb indices -- 3.4.1 Graphs with M1 = M2 -- 3.4.2 Maximum M2(·) −M1(·) in trees -- 3.4.3 Maximum M1(·) −M2(·) in trees -- 3.4.4 Further analysis of the behavior of M1() M2() -- 3.5 More on the ABC index -- 3.5.1 Defining the optimal graph</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">3.5.2 Structural properties of the optimal graphs -- 3.5.3 Proof of Theorem 3.5.1 -- 3.5.4 Acyclic, unicyclic, and bicyclic optimal graphs -- 3.6 Graphs with a given matching number -- 3.6.1 Generalized Randic 'index -- 3.6.2 Zagreb indices based on edge degrees -- 3.6.3 The Atom-bond connectivity index -- Chapter 4 Independent sets: Merrifield-Simmons index and Hosoya in- dex -- 4.1 History and terminologies -- 4.2 Merrifield-Simmons index and Hosoya index: elementary prop-erties -- 4.3 Extremal problems in general graphs and trees -- 4.4 Graph transformations -- 4.5 Trees with fixed parameters -- 4.6 Tree-like graphs -- 4.7 Independence polynomial and matching polynomial -- Chapter 5 Graph spectra and the graph energy -- 5.1 Matrices associated with graphs -- 5.2 Graph spectra and characteristic polynomials -- 5.3 The graph energy: elementary properties -- 5.4 Bounds for the graph energy -- 5.5 Extremal problems in trees -- 5.6 Extremal problems in tree-like graphs -- 5.7 Energy-like invariants -- 5.7.1 Matching energy -- 5.7.2 Laplacian energy -- 5.7.3 Incidence energy and Laplacian-energy-like invariant . -- 5.8 Other invariants based on graph spectra -- 5.8.1 Spectral radius of a graph -- 5.8.2 Estrada index -- Bibliography -- Index</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hua</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1167805259</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Wagner, Stephan</subfield><subfield code="t">Introduction to Chemical Graph Theory</subfield><subfield code="d">Milton : Chapman and Hall/CRC,c2018</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-138-32508-1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-NLEBK</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031062027</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1893476</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-4-NLEBK</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045678511 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:24:45Z |
institution | BVB |
isbn | 9780429833984 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031062027 |
oclc_num | 1099877728 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-4-NLEBK ZDB-4-NLEBK TUM_Einzelkauf |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | CRC Press |
record_format | marc |
series2 | Discrete mathematics and its applications series |
spelling | Wagner, Stephan 1982- Verfasser (DE-588)1167802470 aut Introduction to chemical graph theory Stephan Wagner, Hua Wang Boca Raton ; London ; New York CRC Press [2019] 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Discrete mathematics and its applications series Cover -- Half Title -- Series Editors -- Title -- Copyrights -- Contents -- Preface -- Chapter 1 Preliminaries -- 1.1 Basic graph notations -- 1.2 Special types of graphs -- 1.3 Trees -- 1.4 Degrees in graphs -- 1.5 Distance in graphs -- 1.6 Independent sets and matchings -- 1.7 Topological indices -- Chapter 2 Distance in graphs and the Wiener index -- 2.1 An overview -- 2.2 Properties related to distances -- 2.3 Extremal problems in general graphs and trees -- 2.3.1 The Wiener index -- 2.3.2 The distances between leaves -- 2.3.3 Distance between internal vertices -- 2.3.4 Distance between internal vertices and leaves -- 2.3.5 Sum of eccentricities -- 2.4 The Wiener index of trees with a given degree sequence -- 2.5 The Wiener index of trees with a given segment sequence . . -- 2.5.1 The minimum Wiener index in trees with a given seg-ment sequence -- 2.5.2 The maximum Wiener index in trees with a given seg-ment sequence -- 2.5.3 Further characterization of extremal quasi-caterpillars -- 2.5.4 Trees with a given number of segments -- 2.6 General approaches -- 2.6.1 Caterpillars -- 2.6.2 Greedy trees -- 2.6.3 Comparing greedy trees of different degree sequences and applications -- 2.7 The inverse problem -- Chapter 3 Vertex degrees and the Randic 'index -- 3.1 Introduction -- 3.2 Degree-based indices in trees with a given degree sequence . -- 3.2.1 Greedy trees -- 3.2.2 Alternating greedy trees -- 3.3 Comparison between greedy trees and applications -- 3.3.1 Between greedy trees -- 3.3.2 Applications to extremal trees -- 3.3.3 Application to specific indices -- 3.4 The Zagreb indices -- 3.4.1 Graphs with M1 = M2 -- 3.4.2 Maximum M2(·) −M1(·) in trees -- 3.4.3 Maximum M1(·) −M2(·) in trees -- 3.4.4 Further analysis of the behavior of M1() M2() -- 3.5 More on the ABC index -- 3.5.1 Defining the optimal graph 3.5.2 Structural properties of the optimal graphs -- 3.5.3 Proof of Theorem 3.5.1 -- 3.5.4 Acyclic, unicyclic, and bicyclic optimal graphs -- 3.6 Graphs with a given matching number -- 3.6.1 Generalized Randic 'index -- 3.6.2 Zagreb indices based on edge degrees -- 3.6.3 The Atom-bond connectivity index -- Chapter 4 Independent sets: Merrifield-Simmons index and Hosoya in- dex -- 4.1 History and terminologies -- 4.2 Merrifield-Simmons index and Hosoya index: elementary prop-erties -- 4.3 Extremal problems in general graphs and trees -- 4.4 Graph transformations -- 4.5 Trees with fixed parameters -- 4.6 Tree-like graphs -- 4.7 Independence polynomial and matching polynomial -- Chapter 5 Graph spectra and the graph energy -- 5.1 Matrices associated with graphs -- 5.2 Graph spectra and characteristic polynomials -- 5.3 The graph energy: elementary properties -- 5.4 Bounds for the graph energy -- 5.5 Extremal problems in trees -- 5.6 Extremal problems in tree-like graphs -- 5.7 Energy-like invariants -- 5.7.1 Matching energy -- 5.7.2 Laplacian energy -- 5.7.3 Incidence energy and Laplacian-energy-like invariant . -- 5.8 Other invariants based on graph spectra -- 5.8.1 Spectral radius of a graph -- 5.8.2 Estrada index -- Bibliography -- Index Wang, Hua Verfasser (DE-588)1167805259 aut Erscheint auch als Wagner, Stephan Introduction to Chemical Graph Theory Milton : Chapman and Hall/CRC,c2018 Druck-Ausgabe 978-1-138-32508-1 |
spellingShingle | Wagner, Stephan 1982- Wang, Hua Introduction to chemical graph theory |
title | Introduction to chemical graph theory |
title_auth | Introduction to chemical graph theory |
title_exact_search | Introduction to chemical graph theory |
title_full | Introduction to chemical graph theory Stephan Wagner, Hua Wang |
title_fullStr | Introduction to chemical graph theory Stephan Wagner, Hua Wang |
title_full_unstemmed | Introduction to chemical graph theory Stephan Wagner, Hua Wang |
title_short | Introduction to chemical graph theory |
title_sort | introduction to chemical graph theory |
work_keys_str_mv | AT wagnerstephan introductiontochemicalgraphtheory AT wanghua introductiontochemicalgraphtheory |