Artificial intelligence and machine learning fundamentals: develop real-world applications powered by the latest AI advances

Intro -- Preface -- Principles of Artificial Intelligence -- Introduction -- How does AI Solve Real World Problems? -- Diversity of Disciplines -- Fields and Applications of Artificial Intelligence -- Simulating Intelligence - The Turing Test -- AI Tools and Learning Models -- Classification and Pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Nagy, Zsolt (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Birmingham Packt December 2018
Schlagworte:
Zusammenfassung:Intro -- Preface -- Principles of Artificial Intelligence -- Introduction -- How does AI Solve Real World Problems? -- Diversity of Disciplines -- Fields and Applications of Artificial Intelligence -- Simulating Intelligence - The Turing Test -- AI Tools and Learning Models -- Classification and Prediction -- Learning Models -- The Role of Python in Artificial Intelligence -- Why is Python Dominant in Machine Learning, Data Science, and AI? -- Anaconda in Python -- Python Libraries for Artificial Intelligence -- A Brief Introduction to the NumPy Library -- Exercise 1: Matrix Operations Using NumPy -- Python for Game AI -- Intelligent Agents in Games -- Breadth First Search and Depth First Search -- Exploring the State Space of a Game -- Exercise 2: Estimating the Number of Possible States in Tic-Tac-Toe Game -- Exercise 3: Creating an AI Randomly -- Activity 1: Generating All Possible Sequences of Steps in a Tic-Tac-Toe Game -- Summary -- AI with Search Techniques and Games -- Introduction -- Exercise 4: Teaching the Agent to Win -- Activity 2: Teaching the Agent to Realize Situations When It Defends Against Losses -- Activity 3: Fixing the First and Second Moves of the AI to Make it Invincible -- Heuristics -- Uninformed and Informed Search -- Creating Heuristics -- Admissible and Non-Admissible Heuristics -- Heuristic Evaluation -- Exercise 5: Tic-Tac-Toe Static Evaluation with a Heuristic Function -- Using Heuristics for an Informed Search -- Types of Heuristics -- Pathfinding with the A* Algorithm -- Exercise 6: Finding the Shortest Path to Reach a Goal -- Exercise 7: Finding the Shortest Path Using BFS -- Introducing the A* Algorithm -- A* Search in Practice Using the simpleai Library -- Game AI with the Minmax Algorithm and Alpha-Beta Pruning -- Search Algorithms for Turn-Based Multiplayer Games -- The Minmax Algorithm
Optimizing the Minmax Algorithm with Alpha-Beta Pruning -- DRYing up the Minmax Algorithm - The NegaMax Algorithm -- Using the EasyAI Library -- Activity 4: Connect Four -- Summary -- Regression -- Introduction -- Linear Regression with One Variable -- What Is Regression? -- Features and Labels -- Feature Scaling -- Cross-Validation with Training and Test Data -- Fitting a Model on Data with scikit-learn -- Linear Regression Using NumPy Arrays -- Fitting a Model Using NumPy Polyfit -- Predicting Values with Linear Regression -- Activity 5: Predicting Population -- Linear Regression with Multiple Variables -- Multiple Linear Regression -- The Process of Linear Regression -- Importing Data from Data Sources -- Loading Stock Prices with Yahoo Finance -- Loading Files with pandas -- Loading Stock Prices with Quandl -- Exercise 8: Using Quandl to Load Stock Prices -- Preparing Data for Prediction -- Performing and Validating Linear Regression -- Predicting the Future -- Polynomial and Support Vector Regression -- Polynomial Regression with One Variable -- Exercise 9: 1st, 2nd, and 3rd Degree Polynomial Regression -- Polynomial Regression with Multiple Variables -- Support Vector Regression -- Support Vector Machines with a 3 Degree Polynomial Kernel -- Activity 6: Stock Price Prediction with Quadratic and Cubic Linear Polynomial Regression with Multiple Variables -- Summary -- Classification -- Introduction -- The Fundamentals of Classification -- Exercise 10: Loading Datasets -- Data Preprocessing -- Exercise 11: Pre-Processing Data -- Minmax Scaling of the Goal Column -- Identifying Features and Labels -- Cross-Validation with scikit-learn -- Activity 7: Preparing Credit Data for Classification -- The k-nearest neighbor Classifier -- Introducing the K-Nearest Neighbor Algorithm -- Distance Functions
Exercise 12: Illustrating the K-nearest Neighbor Classifier Algorithm -- Exercise 13: k-nearest Neighbor Classification in scikit-learn -- Exercise 14: Prediction with the k-nearest neighbors classifier -- Parameterization of the k-nearest neighbor Classifier in scikit-learn -- Activity 8: Increasing the Accuracy of Credit Scoring -- Classification with Support Vector Machines -- What are Support Vector Machine Classifiers? -- Understanding Support Vector Machines -- Support Vector Machines in scikit-learn -- Parameters of the scikit-learn SVM -- Activity 9: Support Vector Machine Optimization in scikit-learn -- Summary -- Using Trees for Predictive Analysis -- Introduction to Decision Trees -- Entropy -- Exercise 15: Calculating the Entropy -- Information Gain -- Gini Impurity -- Exit Condition -- Building Decision Tree Classifiers using scikit-learn -- Evaluating the Performance of Classifiers -- Exercise 16: Precision and Recall -- Exercise 17: Calculating the F1 Score -- Confusion Matrix -- Exercise 18: Confusion Matrix -- Activity 10: Car Data Classification -- Random Forest Classifier -- Constructing a Random Forest -- Random Forest Classification Using scikit-learn -- Parameterization of the random forest classifier -- Feature Importance -- Extremely Randomized Trees -- Activity 11: Random Forest Classification for Your Car Rental Company -- Summary -- Clustering -- Introduction to Clustering -- Defining the Clustering Problem -- Clustering Approaches -- Clustering Algorithms Supported by scikit-learn -- The k-means Algorithm -- Exercise 19: k-means in scikit-learn -- Parameterization of the k-means Algorithm in scikit-learn -- Exercise 20: Retrieving the Center Points and the Labels -- k-means Clustering of Sales Data -- Activity 12: k-means Clustering of Sales Data -- Mean Shift Algorithm -- Exercise 21: Illustrating Mean Shift in 2D
Beschreibung:vi, 305 Seiten Illustrationen
ISBN:9781789801651

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!