Schrödinger equations in nonlinear systems:
This book explores the diverse types of Schrödinger equations that appear in nonlinear systems in general, with a specific focus on nonlinear transmission networks and Bose–Einstein Condensates. In the context of nonlinear transmission networks, it employs various methods to rigorously model the phe...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore
Springer
[2019]
|
Schlagworte: | |
Zusammenfassung: | This book explores the diverse types of Schrödinger equations that appear in nonlinear systems in general, with a specific focus on nonlinear transmission networks and Bose–Einstein Condensates. In the context of nonlinear transmission networks, it employs various methods to rigorously model the phenomena of modulated matter-wave propagation in the network, leading to nonlinear Schrödinger (NLS) equations. Modeling these phenomena is largely based on the reductive perturbation method, and the derived NLS equations are then used to methodically investigate the dynamics of matter-wave solitons in the network. In the context of Bose–Einstein condensates (BECs), the book analyzes the dynamical properties of NLS equations with the external potential of different types, which govern the dynamics of modulated matter-waves in BECs with either two-body interactions or both two- and three-body interatomic interactions. It also discusses the method of investigating both the well-posedness and the ill-posedness of the boundary problem for linear and nonlinear Schrödinger equations and presents new results. Using simple examples, it then illustrates the results on the boundary problems. For both nonlinear transmission networks and Bose–Einstein condensates, the results obtained are supplemented by numerical calculations and presented as figures |
Beschreibung: | xvi, 569 Seiten Illustrationen, Diagramme (teilweise farbig) |
ISBN: | 9789811365805 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV045551860 | ||
003 | DE-604 | ||
005 | 20191030 | ||
007 | t | ||
008 | 190409s2019 a||| |||| 00||| eng d | ||
020 | |a 9789811365805 |c hbk. |9 978-981-13-6580-5 | ||
035 | |a (OCoLC)1099836482 | ||
035 | |a (DE-599)BVBBV045551860 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-11 | ||
084 | |a UO 4070 |0 (DE-625)146246: |2 rvk | ||
084 | |a ZQ 5224 |0 (DE-625)158120: |2 rvk | ||
100 | 1 | |a Liu, Wu-Ming |e Verfasser |4 aut | |
245 | 1 | 0 | |a Schrödinger equations in nonlinear systems |c Wu-Ming Liu, Emmanuel Kengne |
264 | 1 | |a Singapore |b Springer |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a xvi, 569 Seiten |b Illustrationen, Diagramme (teilweise farbig) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | |a This book explores the diverse types of Schrödinger equations that appear in nonlinear systems in general, with a specific focus on nonlinear transmission networks and Bose–Einstein Condensates. In the context of nonlinear transmission networks, it employs various methods to rigorously model the phenomena of modulated matter-wave propagation in the network, leading to nonlinear Schrödinger (NLS) equations. Modeling these phenomena is largely based on the reductive perturbation method, and the derived NLS equations are then used to methodically investigate the dynamics of matter-wave solitons in the network. In the context of Bose–Einstein condensates (BECs), the book analyzes the dynamical properties of NLS equations with the external potential of different types, which govern the dynamics of modulated matter-waves in BECs with either two-body interactions or both two- and three-body interatomic interactions. It also discusses the method of investigating both the well-posedness and the ill-posedness of the boundary problem for linear and nonlinear Schrödinger equations and presents new results. Using simple examples, it then illustrates the results on the boundary problems. For both nonlinear transmission networks and Bose–Einstein condensates, the results obtained are supplemented by numerical calculations and presented as figures | ||
650 | 4 | |a bicssc | |
650 | 4 | |a bisacsh | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Physics | |
650 | 0 | 7 | |a Bose-Einstein-Kondensation |0 (DE-588)4402897-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares System |0 (DE-588)4042110-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schrödinger-Gleichung |0 (DE-588)4053332-3 |2 gnd |9 rswk-swf |
653 | |a Hardcover, Softcover / Physik, Astronomie/Allgemeines, Lexika | ||
689 | 0 | 0 | |a Nichtlineares System |0 (DE-588)4042110-7 |D s |
689 | 0 | 1 | |a Schrödinger-Gleichung |0 (DE-588)4053332-3 |D s |
689 | 0 | 2 | |a Bose-Einstein-Kondensation |0 (DE-588)4402897-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Kengne, Emmanuel |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-981-13-6581-2 |
999 | |a oai:aleph.bib-bvb.de:BVB01-030935819 |
Datensatz im Suchindex
_version_ | 1804179527384956928 |
---|---|
any_adam_object | |
author | Liu, Wu-Ming |
author_facet | Liu, Wu-Ming |
author_role | aut |
author_sort | Liu, Wu-Ming |
author_variant | w m l wml |
building | Verbundindex |
bvnumber | BV045551860 |
classification_rvk | UO 4070 ZQ 5224 |
ctrlnum | (OCoLC)1099836482 (DE-599)BVBBV045551860 |
discipline | Physik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03006nam a2200469 c 4500</leader><controlfield tag="001">BV045551860</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191030 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">190409s2019 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811365805</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-981-13-6580-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1099836482</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045551860</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4070</subfield><subfield code="0">(DE-625)146246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZQ 5224</subfield><subfield code="0">(DE-625)158120:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Wu-Ming</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Schrödinger equations in nonlinear systems</subfield><subfield code="c">Wu-Ming Liu, Emmanuel Kengne</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Springer</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 569 Seiten</subfield><subfield code="b">Illustrationen, Diagramme (teilweise farbig)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book explores the diverse types of Schrödinger equations that appear in nonlinear systems in general, with a specific focus on nonlinear transmission networks and Bose–Einstein Condensates. In the context of nonlinear transmission networks, it employs various methods to rigorously model the phenomena of modulated matter-wave propagation in the network, leading to nonlinear Schrödinger (NLS) equations. Modeling these phenomena is largely based on the reductive perturbation method, and the derived NLS equations are then used to methodically investigate the dynamics of matter-wave solitons in the network. In the context of Bose–Einstein condensates (BECs), the book analyzes the dynamical properties of NLS equations with the external potential of different types, which govern the dynamics of modulated matter-waves in BECs with either two-body interactions or both two- and three-body interatomic interactions. It also discusses the method of investigating both the well-posedness and the ill-posedness of the boundary problem for linear and nonlinear Schrödinger equations and presents new results. Using simple examples, it then illustrates the results on the boundary problems. For both nonlinear transmission networks and Bose–Einstein condensates, the results obtained are supplemented by numerical calculations and presented as figures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bose-Einstein-Kondensation</subfield><subfield code="0">(DE-588)4402897-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares System</subfield><subfield code="0">(DE-588)4042110-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schrödinger-Gleichung</subfield><subfield code="0">(DE-588)4053332-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardcover, Softcover / Physik, Astronomie/Allgemeines, Lexika</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineares System</subfield><subfield code="0">(DE-588)4042110-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Schrödinger-Gleichung</subfield><subfield code="0">(DE-588)4053332-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Bose-Einstein-Kondensation</subfield><subfield code="0">(DE-588)4402897-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kengne, Emmanuel</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-981-13-6581-2</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030935819</subfield></datafield></record></collection> |
id | DE-604.BV045551860 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:21:17Z |
institution | BVB |
isbn | 9789811365805 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030935819 |
oclc_num | 1099836482 |
open_access_boolean | |
owner | DE-29T DE-11 |
owner_facet | DE-29T DE-11 |
physical | xvi, 569 Seiten Illustrationen, Diagramme (teilweise farbig) |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Springer |
record_format | marc |
spelling | Liu, Wu-Ming Verfasser aut Schrödinger equations in nonlinear systems Wu-Ming Liu, Emmanuel Kengne Singapore Springer [2019] © 2019 xvi, 569 Seiten Illustrationen, Diagramme (teilweise farbig) txt rdacontent n rdamedia nc rdacarrier This book explores the diverse types of Schrödinger equations that appear in nonlinear systems in general, with a specific focus on nonlinear transmission networks and Bose–Einstein Condensates. In the context of nonlinear transmission networks, it employs various methods to rigorously model the phenomena of modulated matter-wave propagation in the network, leading to nonlinear Schrödinger (NLS) equations. Modeling these phenomena is largely based on the reductive perturbation method, and the derived NLS equations are then used to methodically investigate the dynamics of matter-wave solitons in the network. In the context of Bose–Einstein condensates (BECs), the book analyzes the dynamical properties of NLS equations with the external potential of different types, which govern the dynamics of modulated matter-waves in BECs with either two-body interactions or both two- and three-body interatomic interactions. It also discusses the method of investigating both the well-posedness and the ill-posedness of the boundary problem for linear and nonlinear Schrödinger equations and presents new results. Using simple examples, it then illustrates the results on the boundary problems. For both nonlinear transmission networks and Bose–Einstein condensates, the results obtained are supplemented by numerical calculations and presented as figures bicssc bisacsh Mathematical physics Physics Bose-Einstein-Kondensation (DE-588)4402897-0 gnd rswk-swf Nichtlineares System (DE-588)4042110-7 gnd rswk-swf Schrödinger-Gleichung (DE-588)4053332-3 gnd rswk-swf Hardcover, Softcover / Physik, Astronomie/Allgemeines, Lexika Nichtlineares System (DE-588)4042110-7 s Schrödinger-Gleichung (DE-588)4053332-3 s Bose-Einstein-Kondensation (DE-588)4402897-0 s DE-604 Kengne, Emmanuel Sonstige oth Erscheint auch als Online-Ausgabe 978-981-13-6581-2 |
spellingShingle | Liu, Wu-Ming Schrödinger equations in nonlinear systems bicssc bisacsh Mathematical physics Physics Bose-Einstein-Kondensation (DE-588)4402897-0 gnd Nichtlineares System (DE-588)4042110-7 gnd Schrödinger-Gleichung (DE-588)4053332-3 gnd |
subject_GND | (DE-588)4402897-0 (DE-588)4042110-7 (DE-588)4053332-3 |
title | Schrödinger equations in nonlinear systems |
title_auth | Schrödinger equations in nonlinear systems |
title_exact_search | Schrödinger equations in nonlinear systems |
title_full | Schrödinger equations in nonlinear systems Wu-Ming Liu, Emmanuel Kengne |
title_fullStr | Schrödinger equations in nonlinear systems Wu-Ming Liu, Emmanuel Kengne |
title_full_unstemmed | Schrödinger equations in nonlinear systems Wu-Ming Liu, Emmanuel Kengne |
title_short | Schrödinger equations in nonlinear systems |
title_sort | schrodinger equations in nonlinear systems |
topic | bicssc bisacsh Mathematical physics Physics Bose-Einstein-Kondensation (DE-588)4402897-0 gnd Nichtlineares System (DE-588)4042110-7 gnd Schrödinger-Gleichung (DE-588)4053332-3 gnd |
topic_facet | bicssc bisacsh Mathematical physics Physics Bose-Einstein-Kondensation Nichtlineares System Schrödinger-Gleichung |
work_keys_str_mv | AT liuwuming schrodingerequationsinnonlinearsystems AT kengneemmanuel schrodingerequationsinnonlinearsystems |