Natural language processing recipes: unlocking text data with machine learning and deep learning using Python
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York
Apress
[2019]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Auf der Coverrückseite: "Shelve in: Databases / general, User level: Beginning - intermediate" |
Beschreibung: | xxv, 234 Seiten Illustrationen, Diagramme |
ISBN: | 9781484242667 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV045422197 | ||
003 | DE-604 | ||
005 | 20210504 | ||
007 | t | ||
008 | 190123s2019 a||| |||| 00||| eng d | ||
020 | |a 9781484242667 |c pbk. |9 978-1-4842-4266-7 | ||
035 | |a (OCoLC)1088353513 | ||
035 | |a (DE-599)BVBBV045422197 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-29T |a DE-91G |a DE-739 |a DE-11 |a DE-1043 | ||
084 | |a ST 306 |0 (DE-625)143654: |2 rvk | ||
084 | |a DAT 710f |2 stub | ||
100 | 1 | |a Kulkarni, Akshay |e Verfasser |0 (DE-588)1177937689 |4 aut | |
245 | 1 | 0 | |a Natural language processing recipes |b unlocking text data with machine learning and deep learning using Python |c Akshay Kulkarni, Adarsha Shivananda |
264 | 1 | |a New York |b Apress |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a xxv, 234 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Auf der Coverrückseite: "Shelve in: Databases / general, User level: Beginning - intermediate" | ||
650 | 0 | 7 | |a Automatische Sprachanalyse |0 (DE-588)4129935-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Natürliche Sprache |0 (DE-588)4041354-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Programmierung |0 (DE-588)4076370-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Textverstehendes System |0 (DE-588)4284758-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Natürliche Sprache |0 (DE-588)4041354-8 |D s |
689 | 0 | 1 | |a Automatische Sprachanalyse |0 (DE-588)4129935-8 |D s |
689 | 0 | 2 | |a Textverstehendes System |0 (DE-588)4284758-8 |D s |
689 | 0 | 3 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | 4 | |a Programmierung |0 (DE-588)4076370-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Shivananda, Adarsha |e Verfasser |0 (DE-588)1177938383 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4842-4267-4 |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030808065&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030808065 |
Datensatz im Suchindex
_version_ | 1804179302633177088 |
---|---|
adam_text | Table of Contents About the Authors.............................................................................. xiii About the Technical Reviewers................................................................. xv Acknowledgments.................................................................... Introduction........................................................ xvii xix Chapter 1: Extracting the Data.................................................................... 1 Introduction.............................. ........................................................................................ 1 Recipe 1-1. Collecting Data................................................. 3 Problem.......... ............................................................................................................ 3 Solution....................................................................................... ................. .............3 How It Works.............................................................................................................. 3 Recipe 1-2. Collecting Data from PDFs........................................................................ 5 Problem....................................................................................................................... 5 Solution................................................ 5 How It Works........................................ 5 Recipe 1-3. Collecting Data from Word Files..............................................................7
Problem....................................................................................................................... 7 Solution................................... How It Works................. .....7 7 Recipe 1-4. Collecting Data from JSON.......................................................................8 Problem................................ 8 Solution.................................................................................. 8 How It Works.............................................................................................................. 9 v
TABLE OF CONTENTS Recipe 1-5. Collecting Data from HTML..................................................................... 11 Problem......................................................................................................................11 Solution........................................................... 11 How It Works.............................................................................................................11 Recipe 1-6. Parsing Text Using Regular Expressions............................................... 15 Problem.......................................... 16 Solution..................................................................................................................... 16 How It Works............................................................................................................ 16 Recipe 1-7. Handling Strings....................................................................................... 26 Problem..................................................................................................................... 26 Solution..................................................................................................................... 26 How It Works............................................................................................................ 27 Recipe 1-8. Scraping Text from the Web.................................................................... 28 Problem..................................................................................................................... 29
Solution..................................................................................................................... 29 How It Works............................................................................................................ 29 Chapter 2: Exploring and Processing Text Data......................................37 Recipe 2-1. Converting Text Data to Lowercase.......................................................38 Problem..................................................................................................................... 38 Solution..................................................................................................................... 39 How It Works............................................................................................................ 39 Recipe 2-2. Removing Punctuation.......... .................................................................. 41 Problem................... 41 Solution....................... 41 How It Works............................................................................................................ 41 VI
TABLE OF CONTENTS Recipe 2-3. Removing Stop Words........... ......... Problem............................................................................................................. 43 44 Solution..................................................................................................................... 44 How It Works............................................................................................................ 44 Recipe 2-4. Standardizing Text....................................................................................46 Problem..................................................................................................................... 46 Solution..................................................................................................................... 46 How It Works............................................................................................................ 46 Recipe 2-5. Correcting Spelling............................................................. Problem..................................................................... 47 ..48 Solution.....................................................................................................................48 How It Works............................................................................................. 48 Recipe 2-6. Tokenizing Text.......................................................................................... 50 Problem.................................................................................................... 50
Solution.....................................................................................................................50 How It Works............................................................................................................51 Recipe 2-7. Stemming...................................................................................... Problem............................................................. Solution........................................................................................................ 52 ...53 53 How It Works............................................................................................................53 Recipe 2-8. Lemmatizing............................................................................................. 54 Problem.....................................................................................................................55 Solution.....................................................................................................................55 How It Works............................................................................................... 55 Recipe 2-9. Exploring Text Data.................................................................................. 56 Problem.....................................................................................................................56 Solution.....................................................................................................................56 How It
Works............................................................................................................57 vii
TABLE OF CONTENTS Recipe 2-10. Building a Text Preprocessing Pipeline...............................................62 Problem..................................................................................................................... 62 Solution...................... 62 HowItWorks............................................................................................................ 62 Chapter 3: Converting Text to Features................................................... 67 Recipe 3-1. Converting Text to Features Using One Hot Encoding........................ 68 Problem.........;....................................................................................................... 68 Solution..................................................................................................................... 68 HowItWorks.............................. 69 Recipe 3-2. Converting Text to Features Using Count Vectorizing........................ 70 Problem...................................... 70 Solution............. 70 HowItWorks............................................................................................................ 71 Recipe 3-3. Generating N-grams................................................................................ 72 Problem.....................................................................................................................72 Solution................................................................................ 72 How It
Works............................................................................................................ 73 Recipe 3-4. Generating Co-occurrence Matrix..........................................................75 Problem.....................................................................................................................75 Solution..................................................................................................................... 75 HowItWorks............................................................................................................ 75 Recipe 3-5. Hash Vectorizing.......................................................................................78 Problem..................................................................................................................... 78 Solution.....................................................................................................................78 How It Works............................................................................................................ 78 VIII
TABLE OF CONTENTS Recipe 3-6. Converting Text to Features Using TF-IDF....................................... 79 Problem..................................................................................................................... 80 Solution....... ................................................. 80 How It Works............................................................................................... 80 Recipe 3-7. Implementing Word Embeddings...........................................................82 Problem.......................................................................................................... 84 Solution..................................................................................................................... 84 How It Works........................................................................................... 85 Recipe 3-8 Implementing fastText..............................................................................93 Problem.....................................................................................................................93 Solution.....................................................................................................................94 How It Works............................................................................................................ 94 Chapter 4: Advanced Natural Language Processing...................... .......97 Recipe 4-1. Extracting Noun Phrases...................................................................... 100
Problem.............................................................................................................. ....100 Solution...................................................................................................................100 How It Works......................................................................... 100 Recipe 4-2. Finding Similarity Between Texts.........................................................101 Problem...................................................................................................................101 Solution...................................................................................................................101 How It Works..........................................................................................................102 Recipe 4-3. Tagging Part of Speech......................................................................... 104 Problem...................................................................................................................104 Solution...................................................................................................................104 How It Works..........................................................................................................105 ix
TABLE OF CONTENTS Recipe 4-4. Extract Entities from Text.................................................................. 108 Problem............................................................................................................ 108 Solution............................................................................................................ 108 How It Works ....................................................................................................108 Recipe 4-5. Extracting Topics from Text............................................................... 110 Problem............................................................................................................ 110 Solution...........................................................................................................110 How It Works....................................................................................................110 Recipe 4-6. Classifying Text.................................................................................. 114 Problem............................................................................................................ 114 Solution............................................................................................................114 How It Works................................................................................................... 115 Recipe 4-7. Carrying Out Sentiment Analysis..................................................... 119
Problem............................................................................................................119 Solution............................................................................................................119 How It Works....................................................................................................119 Recipe 4-8. Disambiguating Text......................................................................... 121 Problem............................................................................................................121 Solution............................................................................................................121 How It Works....................................................................................................121 Recipe 4-9. Converting Speech to Text................................................................ 123 Problem............................................................................................................123 Solution............................................................................................................123 How It Works....................................................................................................123 Recipe 4-10. Converting Textto Speech............................................................... 126 Problem............................................................................................................126
Solution............................................................................................................126 How It Works................................................................................................... 126 x
TABLE OF CONTENTS Recipe 4-11. Translating Speech........................... .....127 Problem...................................................................................................................127 Solution................................................... 127 How It Works.........................................................................................................128 Chapter 5: Implementing Industry Applications.................... 129 Recipe 5-1. Implementing Multiclass Classification............................................. 130 Problem..................................................................... 130 Solution...................................................................................................................130 How It Works...................................................................... ..130 Recipe 5-2. Implementing Sentiment Analysis...................................................... 139 Problem..................................................................................................................139 Solution...................................... 139 How It Works..........................................................................................................139 Recipe 5-3. Applying Text Similarity Functions.......................................... 152 Problem.......................................................................................................... .......152 Solution...................................................................................... ...152 How It
Works..........................................................................................................152 Recipe 5-4. Summarizing Text Data............................................................. 165 Problem.................................................................................................................. 165 Solution...................................................................................................................165 How It Works...................................................................... 166 Recipe 5-5. Clustering Documents.......................................................................... 172 Problem...................................................................................................................172 Solution.................................................................. 173 How It Works..........................................................................................................173 xi
TABLE OF CONTENTS Recipe 5-6. NLP in a Search Engine.........................................................................180 Problem................................................................................................................... 180 Solution................................................................................................................... 180 How It Works.......................................................................................................... 181 Chapter 6: Deep Learning forNLP.............................................................185 Introduction to Deep Learning......................... 185 Convolutional Neural Networks........................................................................... 187 Recurrent Neural Networks..................................................................................192 Recipe 6-1. Retrieving Information...........................................................................194 Problem................................................................................................................... 195 Solution................................................................................................................... 195 How It Works.......................................................................................................... 196 Recipe 6-2. Classifying Text with Deep Learning................................................... 202
Problem...................................................................................................................203 Solution...................................................................................................................203 How It Works..........................................................................................................203 Recipe 6-3. Next Word Prediction.............................................................................218 Problem.................................................................................................................. 218 Solution...................................................................................................................219 How It Works.......................................................................................................... 219 Index.............................................................................................................229 Xll
|
any_adam_object | 1 |
author | Kulkarni, Akshay Shivananda, Adarsha |
author_GND | (DE-588)1177937689 (DE-588)1177938383 |
author_facet | Kulkarni, Akshay Shivananda, Adarsha |
author_role | aut aut |
author_sort | Kulkarni, Akshay |
author_variant | a k ak a s as |
building | Verbundindex |
bvnumber | BV045422197 |
classification_rvk | ST 306 |
classification_tum | DAT 710f |
ctrlnum | (OCoLC)1088353513 (DE-599)BVBBV045422197 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02208nam a2200469 c 4500</leader><controlfield tag="001">BV045422197</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210504 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">190123s2019 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484242667</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-1-4842-4266-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1088353513</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045422197</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-1043</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 306</subfield><subfield code="0">(DE-625)143654:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 710f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kulkarni, Akshay</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1177937689</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Natural language processing recipes</subfield><subfield code="b">unlocking text data with machine learning and deep learning using Python</subfield><subfield code="c">Akshay Kulkarni, Adarsha Shivananda</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Apress</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxv, 234 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Auf der Coverrückseite: "Shelve in: Databases / general, User level: Beginning - intermediate"</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automatische Sprachanalyse</subfield><subfield code="0">(DE-588)4129935-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Natürliche Sprache</subfield><subfield code="0">(DE-588)4041354-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Programmierung</subfield><subfield code="0">(DE-588)4076370-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Textverstehendes System</subfield><subfield code="0">(DE-588)4284758-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Natürliche Sprache</subfield><subfield code="0">(DE-588)4041354-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Automatische Sprachanalyse</subfield><subfield code="0">(DE-588)4129935-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Textverstehendes System</subfield><subfield code="0">(DE-588)4284758-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Programmierung</subfield><subfield code="0">(DE-588)4076370-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shivananda, Adarsha</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1177938383</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4842-4267-4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030808065&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030808065</subfield></datafield></record></collection> |
id | DE-604.BV045422197 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:17:43Z |
institution | BVB |
isbn | 9781484242667 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030808065 |
oclc_num | 1088353513 |
open_access_boolean | |
owner | DE-706 DE-29T DE-91G DE-BY-TUM DE-739 DE-11 DE-1043 |
owner_facet | DE-706 DE-29T DE-91G DE-BY-TUM DE-739 DE-11 DE-1043 |
physical | xxv, 234 Seiten Illustrationen, Diagramme |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Apress |
record_format | marc |
spelling | Kulkarni, Akshay Verfasser (DE-588)1177937689 aut Natural language processing recipes unlocking text data with machine learning and deep learning using Python Akshay Kulkarni, Adarsha Shivananda New York Apress [2019] © 2019 xxv, 234 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Auf der Coverrückseite: "Shelve in: Databases / general, User level: Beginning - intermediate" Automatische Sprachanalyse (DE-588)4129935-8 gnd rswk-swf Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf Natürliche Sprache (DE-588)4041354-8 gnd rswk-swf Programmierung (DE-588)4076370-5 gnd rswk-swf Textverstehendes System (DE-588)4284758-8 gnd rswk-swf Natürliche Sprache (DE-588)4041354-8 s Automatische Sprachanalyse (DE-588)4129935-8 s Textverstehendes System (DE-588)4284758-8 s Python Programmiersprache (DE-588)4434275-5 s Programmierung (DE-588)4076370-5 s DE-604 Shivananda, Adarsha Verfasser (DE-588)1177938383 aut Erscheint auch als Online-Ausgabe 978-1-4842-4267-4 Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030808065&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kulkarni, Akshay Shivananda, Adarsha Natural language processing recipes unlocking text data with machine learning and deep learning using Python Automatische Sprachanalyse (DE-588)4129935-8 gnd Python Programmiersprache (DE-588)4434275-5 gnd Natürliche Sprache (DE-588)4041354-8 gnd Programmierung (DE-588)4076370-5 gnd Textverstehendes System (DE-588)4284758-8 gnd |
subject_GND | (DE-588)4129935-8 (DE-588)4434275-5 (DE-588)4041354-8 (DE-588)4076370-5 (DE-588)4284758-8 |
title | Natural language processing recipes unlocking text data with machine learning and deep learning using Python |
title_auth | Natural language processing recipes unlocking text data with machine learning and deep learning using Python |
title_exact_search | Natural language processing recipes unlocking text data with machine learning and deep learning using Python |
title_full | Natural language processing recipes unlocking text data with machine learning and deep learning using Python Akshay Kulkarni, Adarsha Shivananda |
title_fullStr | Natural language processing recipes unlocking text data with machine learning and deep learning using Python Akshay Kulkarni, Adarsha Shivananda |
title_full_unstemmed | Natural language processing recipes unlocking text data with machine learning and deep learning using Python Akshay Kulkarni, Adarsha Shivananda |
title_short | Natural language processing recipes |
title_sort | natural language processing recipes unlocking text data with machine learning and deep learning using python |
title_sub | unlocking text data with machine learning and deep learning using Python |
topic | Automatische Sprachanalyse (DE-588)4129935-8 gnd Python Programmiersprache (DE-588)4434275-5 gnd Natürliche Sprache (DE-588)4041354-8 gnd Programmierung (DE-588)4076370-5 gnd Textverstehendes System (DE-588)4284758-8 gnd |
topic_facet | Automatische Sprachanalyse Python Programmiersprache Natürliche Sprache Programmierung Textverstehendes System |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030808065&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT kulkarniakshay naturallanguageprocessingrecipesunlockingtextdatawithmachinelearninganddeeplearningusingpython AT shivanandaadarsha naturallanguageprocessingrecipesunlockingtextdatawithmachinelearninganddeeplearningusingpython |