Thoughtful data science: a programmer's toolset for data analysis and artificial intelligence with Python, Jupyter Notebook, and PixieDust

Cover -- Copyright -- Packt upsell -- Contributors -- Table of Contents -- Preface -- Chapter 1 - Perspectives on Data Science from a Developer -- What is data science -- Is data science here to stay? -- Why is data science on the rise? -- What does that have to do with developers? -- Putting these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Taieb, David ca. 20./21. Jh (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Birmingham ; Mumbai Packt July 2018
Schlagworte:
Zusammenfassung:Cover -- Copyright -- Packt upsell -- Contributors -- Table of Contents -- Preface -- Chapter 1 - Perspectives on Data Science from a Developer -- What is data science -- Is data science here to stay? -- Why is data science on the rise? -- What does that have to do with developers? -- Putting these concepts into practice -- Deep diving into a concrete example -- Data pipeline blueprint -- What kind of skills are required to become a data scientist? -- IBM Watson DeepQA -- Back to our sentiment analysis of Twitter hashtags project -- Lessons learned from building our first enterprise-ready data pipeline -- Data science strategy -- Jupyter Notebooks at the center of our strategy -- Why are Notebooks so popular? -- Summary -- Chapter 2 - Data Science at Scale with Jupyter Notebooks and PixieDust -- Why choose Python? -- Introducing PixieDust -- SampleData - a simple API for loading data -- Wrangling data with pixiedust_rosie -- Display - a simple interactive API for data visualization -- Filtering -- Bridging the gap between developers and data scientists with PixieApps -- Architecture for operationalizing data science analytics -- Summary -- Chapter 3 - PixieApp under the Hood -- Anatomy of a PixieApp -- Routes -- Generating requests to routes -- A GitHub project tracking sample application -- Displaying the search results in a table -- Invoking the PixieDust display() API using pd_entity attribute -- Invoking arbitrary Python code with pd_script -- Making the application more responsive with pd_refresh -- Creating reusable widgets -- Summary -- Chapter 4 - Deploying PixieApps to the Web with the PixieGateway Server -- Overview of Kubernetes -- Installing and configuring the PixieGateway server -- PixieGateway server configuration -- PixieGateway architecture -- Publishing an application -- Encoding state in the PixieApp URL
Sharing charts by publishing them as web pages -- PixieGateway admin console -- Python Console -- Displaying warmup and run code for a PixieApp -- Summary -- Chapter 5 - Best Practices and Advanced PixieDust Concepts -- Use @captureOutput decorator to integrate the output of third-party Python libraries -- Create a word cloud image with @captureOutput -- Increase modularity and code reuse -- Creating a widget with pd_widget -- PixieDust support of streaming data -- Adding streaming capabilities to your PixieApp -- Adding dashboard drill-downs with PixieApp events -- Extending PixieDust visualizations -- Debugging -- Debugging on the Jupyter Notebook using pdb -- Visual debugging with PixieDebugger -- Debugging PixieApp routes with PixieDebugger -- Troubleshooting issues using PixieDust logging -- Client-side debugging -- Run Node.js inside a Python Notebook -- Summary -- Chapter 6 - Image Recognition with TensorFlow -- What is machine learning? -- What is deep learning? -- Getting started with TensorFlow -- Simple classification with DNNClassifier -- Image recognition sample application -- Part 1 - Load the pretrained MobileNet model -- Part 2 - Create a PixieApp for our image recognition sample application -- Part 3 - Integrate the TensorBoard graph visualization -- Part 4 - Retrain the model with custom training data -- Summary -- Chapter 7 - Big Data Twitter Sentiment Analysis -- Getting started with Apache Spark -- Apache Spark architecture -- Configuring Notebooks to work with Spark -- Twitter sentiment analysis application -- Part 1 - Acquiring the data with Spark Structured Streaming -- Architecture diagram for the data pipeline -- Authentication with Twitter -- Creating the Twitter stream -- Creating a Spark Streaming DataFrame -- Creating and running a structured query -- Monitoring active streaming queries
Creating a batch DataFrame from the Parquet files -- Part 2 - Enriching the data with sentiment and most relevant extracted entity -- Getting started with the IBM Watson Natural Language Understanding service -- Part 3 - Creating a real-time dashboard PixieApp -- Refactoring the analytics into their own methods -- Creating the PixieApp -- Part 4 - Adding scalability with Apache Kafka and IBM Streams Designer -- Streaming the raw tweets to Kafka -- Enriching the tweets data with the Streaming Analytics service -- Creating a Spark Streaming DataFrame with a Kafka input source -- Summary -- Chapter 8 - Financial Time Series Analysis and Forecasting -- Getting started with NumPy -- Creating a NumPy array -- Operations on ndarray -- Selections on NumPy arrays -- Broadcasting -- Statistical exploration of time series -- Hypothetical investment -- Autocorrelation function (ACF) and partial autocorrelation function (PACF) -- Putting it all together with the StockExplorer PixieApp -- BaseSubApp - base class for all the child PixieApps -- StockExploreSubApp - first child PixieApp -- MovingAverageSubApp - second child PixieApp -- AutoCorrelationSubApp - third child PixieApp -- Time series forecasting using the ARIMA model -- Build an ARIMA model for the MSFT stock time series -- StockExplorer PixieApp Part 2 - add time series forecasting using the ARIMA model -- Summary -- Chapter 9 - US Domestic Flight Data Analysis Using Graphs -- Introduction to graphs -- Graph representations -- Graph algorithms -- Graph and big data -- Getting started with the networkx graph library -- Creating a graph -- Visualizing a graph -- Part 1 - Loading the US domestic flight data into a graph -- Graph centrality -- Part 2 - Creating the USFlightsAnalysis PixieApp -- Part 3 - Adding data exploration to the USFlightsAnalysis PixieApp
Beschreibung:xvi, 467 Seiten Illustrationen, Diagramme
ISBN:9781788839969

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!