Analytic theory of continued fractions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Mineola, New York
Dover Publications, Inc.
2018
|
Ausgabe: | Dover edition, first published |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Originally published: New York : D. Van Nostrand Company, 1948. - Includes bibliographical references (pages 417-425) and index. |
Beschreibung: | xiii, 433 pages 23 cm |
ISBN: | 9780486823690 0486823695 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV045394768 | ||
003 | DE-604 | ||
005 | 20190131 | ||
007 | t | ||
008 | 190110s2018 xxu |||| 00||| eng d | ||
010 | |a 017051309 | ||
020 | |a 9780486823690 |9 978-0-486-82369-0 | ||
020 | |a 0486823695 |9 0-486-82369-5 | ||
035 | |a (OCoLC)1085408200 | ||
035 | |a (DE-599)BVBBV045394768 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-739 | ||
050 | 0 | |a QA295 | |
082 | 0 | |a 515/.243 |2 23 | |
084 | |a SK 470 |0 (DE-625)143241: |2 rvk | ||
100 | 1 | |a Wall, Hubert S. |d 1902-1971 |0 (DE-588)17246000X |4 aut | |
245 | 1 | 0 | |a Analytic theory of continued fractions |c Hubert Stanley Wall |
250 | |a Dover edition, first published | ||
264 | 1 | |a Mineola, New York |b Dover Publications, Inc. |c 2018 | |
300 | |a xiii, 433 pages |c 23 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Originally published: New York : D. Van Nostrand Company, 1948. - Includes bibliographical references (pages 417-425) and index. | ||
650 | 4 | |a Continued fractions | |
650 | 0 | 7 | |a Kettenbruch |0 (DE-588)4030401-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kettenbruch |0 (DE-588)4030401-2 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030780982&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030780982 |
Datensatz im Suchindex
_version_ | 1804179258188234752 |
---|---|
adam_text | CONTENTS PAGE Preface....................................................................................... vii Introduction......................................................................... 1 Part I: Convergence Theory CHAPTER I: THE CONTINUED FRACTION AS A PRODUCT OF LINEAR FRACTIONAL TRANSFORMATIONS SUCTION 1. 2. 3. 4. Definitions and Formulas................................................. 13 Continued Fractions and Series......................................... 17 Equivalence Transformations ................................................ 19 Even and Odd Parts of a Continued Fraction .................... 20 CHAPTER II : CONVERGENCE THEOREMS 5. 6. 7. 8. Some General Remarks on the Convergence Problem ... 25 Necessary Conditions for Convergence ................................ 27 A Sufficient Condition for Convergence.......................... 33 Convergence of Periodic Continued Fractions .................... 35 CHAPTER in: CONVERGENCE OF CONTINUED FRACTIONS WHOSE PARTIAL DENOMINATORS ARE EQUAL TO UNITY 9. The First Interpretation of the Fundamental Inequalities . 40 10. Worpitzky’s Theorem.......................................................... 42 11. Convergence of Continued Fractions Whose Partial Quotients Հ ք.լ т- (1 ֊ gp-l)gpXp Are ot the b orm---------J........... ............................................... 12. 13. 14. 15. A Convergence Theorem of von Koch.............................. Second Interpretation of the Fundamental Inequalities . The Parabola Theorem...................................................... “Convergence Neighborhoods” of a
Point (1).................. ¡X 45 50 . 52 56 62
x CONTENTS CHAPTER IV. introduction to the theory of positive DEFINITE CONTINUED FRACTIONS SECTION PAGE 16. Definition of a Positive Definite Continued Fraction ... 17. The Nest of Circles................................................................. 18. Positive Definite Continued Fractions and the Parabola Theorem ............................................................................ 19. Chain Sequences..................................................................... 20. Quadratic Forms and Chain Sequences............................... 64 70 75 79 86 CHAPTER v: SOME GENERAL CONVERGENCE THEOREMS 21. 22. 23. 24. 25. 26. 27. Schwarz’s Inequality............................................................. The Theorem of Invariability .............................................. The Indeterminate Case......................................................... Convergence Continuation Theorem .................................. The Determinate Case ......................................................... Bounded J-fractions................................................................. Real J-fractions ..................................................................... 94 96 99 104 109 110 114 CHAPTER VI : STIELTJES TYPE CONTINUED FRACTIONS 28. Convergence and Divergence of the Continued Fraction of Stieltjes................................................................................ 118 29. The Condition (H)................................................................. 122 30. Three Convergence Theorems ..............................................
131 CHAPTER vii: EXTENSIONS OF THE PARABOLA THEOREM 31. 32. 33. 34. 35. A Family of Parabolic Domains .......................................... “Convergence Neighborhoods” of a Point (2) A Theorem of Van Vleck ..................................................... The Cardioid Theorem ......................................................... An F.xtension of a Theorem of Szász .................................. 135 137 138 140 143 CHAPTER Vin: THE VALUE REGION PROBLEM 36. 37. 38. 39. A Sufficient Condition............................................................. 147 The Two-Circle Theorem.......................................................... 148 Circular Element Regions with Centers at the Origin . . . 150 A Family of Parabolic Element Regions.............................. 152
CONTENTS Part II: xi Function Theory CHAPTER IX: J-FRACTION EXPANSIONS FOR RATIONAL FUNCTIONS SECTION PAGE 40. The Expansion Algorithm..................................................... 161 41. Conditions Involving Determinants...................................... 164 42. Relationship Between the J-fraction and the Power Series for ƒi//о................................................................................ 166 43. Rational Fractions with Simple Poles and Positive Residues 167 44. Expansion of Rational Functions into Stieltjes Type Con tinued Fractions................................................................. 170 CHAPTER x: THEORY OF EQUATIONS 45. 46. 47. 48. The Test-Fraction ................................................................. 174 Polygonal Bounds for the Roots of a Polynomial.................... 176 Polynomials Whose Roots Are in a Given Half-Plane ... 178 Determination of the Number of Roots of P(z) in Each of the Half-Planes Oi(z) 0......................................................... 182 49. Computation of the Roots of Polynomials........................... 185 CHAPTER XI: J-FRACTION EXPANSION S FOR POWER SERIES 50. 51. 52. 53. 54. Polynomials Orthogonal Relative to a Sequence .................... 192 Algorithm for Expanding a Power Series into a J-fraction 196 StieltjesType Continued Fraction Expansions for Power Series 200 Stieltjes’ Expansion Theorem .................................................. 202 Convergence Questions..............................................................208 CHAPTER XII : MATRIX THEORY OF
CONTINUED FRACTIONS 55. 56. 57. 58. 59. 60. 61. Linear Forms .............................................................................214 Bilinear Forms.............................................................................216 Bounded Matrices ..................................................................... 218 Bounded Reciprocals ot Bounded Matrices............................... 223 The Bounded Reciprocal of a Bounded J-matrix....................226 Reciprocals of an Arbitrary J-matrix.......................................228 Reciprocals of the J-matrix Associated with a Positive Definite J-fraction ..................................................................230 62. Estimates for the Equivalent Functions................................... 235
xii CONTEXTS CHAPTER хш: CONTINUED FRACTIONS AND DEFINITE INTEGRALS SECTION ГАСЕ 63. 64. 65. 66. The Stieltjes Integral..................................................................239 Sequences of Stieltjes Integrals.................................................. 245 The Stieltjes Inversion Formula ...............................................247 Representation of an Equivalent Function of a Positive Definite J-fraction as a Stieltjes Transform............................250 67. Proper Equivalent Functions...................................................... 254 CHAPTER XIV: THE MOMENT PROBLEM FOR A FINITE INTERVAL 68. 69. 70. 71. 72. Formulation of the Problem...................................................... 258 Solution of the Moment Problem byMeans of S-fractions 260 Some Geometry ......................................................................... 263 Totally Monotone Sequences...................................................... 267 Composition of Moment Sequences........................................... 269 CHAPTER XV: BOUNDED ANALYTIC FUNCTIONS 73. Integral Formulas for Bounded Analytic Functions .... 275 74. Continued Fraction Expansions for Real Analytic Functions 278 75. Continued Fraction Expansions for 1/G(z) and for G[ —z/(l + z)] in Terms of the Expansions for G(z) . . . 280 76. Condition for G(z)/л/1 + z to Be Bounded in the Unit Circle.................................................................................. 283 77. Analytic Functions Bounded in theUnit Circle......................... 285 78. Continued Fraction Expansions for
Arbitrary Functions Which Are Analytic and Have Positive Real Parts in Ext (-l,-oo)..........................................................................288 CHAPTER XVI : HAUSDORFF SUMMABILITY 79. 80. 81. 82. 83. Hausdorff Matrices......................................................................302 A Theorem on (A, ¿įj-Transiormations................................... 304 Hausdorff Means......................................................................... 306 Examples of Hausdorff Means.................................................. 309 The Hausdorff Inclusion Problem...............................................310
CONTENTS xiii CHAPTER xvii: the moment problem for an INFINITE INTERVAL SECTION 84. 85. 86. 87. 88. PAGE Asymptotic Expressions for J-fractions.......................................316 A Theorem of Hamburger..........................................................321 The Moment Problem for the Interval (—»,+») . . . . 325 The Stieltjes Moment Problem.................................................. 327 A Theorem of Carleman..............................................................330 CHAPTER xviii: the continued fraction OF GAUSS 89. 90. 91. 92. General Properties..................................................................... 335 Elementary Functions................................................................. 342 Certain Meromorphic Functions.............................................. 347 A Class of Divergent Series ......................................................349 chapter xix: stieltjes summability 93. Definition and Illustrative Examples.......................................362 94. List of Expansion Formulas......................................................369 chapter 95. 96. 97. 98. 99. 100. 101. 102. xx : the pádé table Definitions.................................................................................... 377 The Normal Pádé Table..............................................................379 The Pádé Table for the Series of Stieltjes............................... 389 General Theorems on the Pádé Table.......................................393
C-fractions.................................................................................... 399 Regular C-fractions and Power Series.......................................405 «-regular C-fractions................................................................. 409 Concluding Remarks on the Pádé Table...................................410 Bibliography................................................................................ 417 Index............................................................................................427
|
any_adam_object | 1 |
author | Wall, Hubert S. 1902-1971 |
author_GND | (DE-588)17246000X |
author_facet | Wall, Hubert S. 1902-1971 |
author_role | aut |
author_sort | Wall, Hubert S. 1902-1971 |
author_variant | h s w hs hsw |
building | Verbundindex |
bvnumber | BV045394768 |
callnumber-first | Q - Science |
callnumber-label | QA295 |
callnumber-raw | QA295 |
callnumber-search | QA295 |
callnumber-sort | QA 3295 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 470 |
ctrlnum | (OCoLC)1085408200 (DE-599)BVBBV045394768 |
dewey-full | 515/.243 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.243 |
dewey-search | 515/.243 |
dewey-sort | 3515 3243 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | Dover edition, first published |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01586nam a2200409 c 4500</leader><controlfield tag="001">BV045394768</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190131 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">190110s2018 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">017051309</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780486823690</subfield><subfield code="9">978-0-486-82369-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0486823695</subfield><subfield code="9">0-486-82369-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1085408200</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045394768</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA295</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.243</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="0">(DE-625)143241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wall, Hubert S.</subfield><subfield code="d">1902-1971</subfield><subfield code="0">(DE-588)17246000X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytic theory of continued fractions</subfield><subfield code="c">Hubert Stanley Wall</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Dover edition, first published</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Mineola, New York</subfield><subfield code="b">Dover Publications, Inc.</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 433 pages</subfield><subfield code="c">23 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Originally published: New York : D. Van Nostrand Company, 1948. - Includes bibliographical references (pages 417-425) and index.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continued fractions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kettenbruch</subfield><subfield code="0">(DE-588)4030401-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kettenbruch</subfield><subfield code="0">(DE-588)4030401-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030780982&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030780982</subfield></datafield></record></collection> |
id | DE-604.BV045394768 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:17:00Z |
institution | BVB |
isbn | 9780486823690 0486823695 |
language | English |
lccn | 017051309 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030780982 |
oclc_num | 1085408200 |
open_access_boolean | |
owner | DE-739 |
owner_facet | DE-739 |
physical | xiii, 433 pages 23 cm |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Dover Publications, Inc. |
record_format | marc |
spelling | Wall, Hubert S. 1902-1971 (DE-588)17246000X aut Analytic theory of continued fractions Hubert Stanley Wall Dover edition, first published Mineola, New York Dover Publications, Inc. 2018 xiii, 433 pages 23 cm txt rdacontent n rdamedia nc rdacarrier Originally published: New York : D. Van Nostrand Company, 1948. - Includes bibliographical references (pages 417-425) and index. Continued fractions Kettenbruch (DE-588)4030401-2 gnd rswk-swf Kettenbruch (DE-588)4030401-2 s DE-604 Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030780982&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Wall, Hubert S. 1902-1971 Analytic theory of continued fractions Continued fractions Kettenbruch (DE-588)4030401-2 gnd |
subject_GND | (DE-588)4030401-2 |
title | Analytic theory of continued fractions |
title_auth | Analytic theory of continued fractions |
title_exact_search | Analytic theory of continued fractions |
title_full | Analytic theory of continued fractions Hubert Stanley Wall |
title_fullStr | Analytic theory of continued fractions Hubert Stanley Wall |
title_full_unstemmed | Analytic theory of continued fractions Hubert Stanley Wall |
title_short | Analytic theory of continued fractions |
title_sort | analytic theory of continued fractions |
topic | Continued fractions Kettenbruch (DE-588)4030401-2 gnd |
topic_facet | Continued fractions Kettenbruch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030780982&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT wallhuberts analytictheoryofcontinuedfractions |