Introduction to deep learning:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, Massachusetts ; London, England
The MIT Press
[2018]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xii, 174 Seiten Illustrationen, Diagramme |
ISBN: | 0262039516 9780262039512 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV045387447 | ||
003 | DE-604 | ||
005 | 20190508 | ||
007 | t | ||
008 | 190107s2018 a||| |||| 00||| eng d | ||
020 | |a 0262039516 |9 0-262-03951-6 | ||
020 | |a 9780262039512 |9 978-0-262-03951-2 | ||
035 | |a (OCoLC)1098189657 | ||
035 | |a (DE-599)BVBBV045387447 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-384 |a DE-83 |a DE-523 |a DE-Aug4 |a DE-29T |a DE-525 |a DE-1028 |a DE-739 | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Charniak, Eugene |d 1946- |e Verfasser |0 (DE-588)1183007523 |4 aut | |
245 | 1 | 0 | |a Introduction to deep learning |c Eugene Charniak |
264 | 1 | |a Cambridge, Massachusetts ; London, England |b The MIT Press |c [2018] | |
300 | |a xii, 174 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030773779&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030773779 |
Datensatz im Suchindex
_version_ | 1804179243797577728 |
---|---|
adam_text | Contents Preface xi 1 Feed-Forward Neural Nets 1.1 Perceptrons................................................................................... 1.2 Cross-entropy Loss Functions for Neural Nets......................... 1.3 Derivatives and StochasticGradient Descent............................. 1.4 Writing Our Program ................................................................. 1.5 Matrix Representation of Neural Nets..................................... 1.6 Data Independence....................................................................... 1.7 References and Further Readings.............................................. 1.8 Written Exercises.......................................................................... 1 3 9 14 18 21 24 25 26 2 Tensor flow 29 2.1 Tensorflow Preliminaries.............................................................. 29 2.2 A TF Program............................................................................. 33 2.3 Multilayered NNs.......................................................................... 38 2.4 Other Pieces ................................................................................. 42 2.4.1 Checkpointing ............................................................... 42 2.4.2 tensordot ....................................................................... 43 2.4.3 Initialization of TFVariables.......................................... 44 2.4.4 Simplifying TFGraph Creation....................................... 47 2.5 References and Further Readings.............................................. 48 2.6 Written
Exercises.......................................................................... 49 3 Convolutional Neural Networks 3.1 Filters, Strides, and Padding ..................................................... 3.2 A Simple TF Convolution Example........................................... 3.3 Multilevel Convolution................................................................. 3.4 Convolution Details .................................................................... vii 51 52 57 61 64
viii CONTENTS 3.4.1 Biases................................................................................ 3.4.2 Layers with Convolution.................................................. 3.4.3 Pooling............................................................................. References and Further Readings.............................................. Written Exercises.......................................................................... 64 65 66 67 68 4 Word Embeddings and Recurrent NNs 4.1 Word Embeddings for Language Models.................................. 4.2 Building Feed-Forward Language Models.................................. 4.3 Improving Feed-Forward Language Models............................... 4.4 Overfitting .................................................................................... 4.5 Recurrent Networks .................................................................... 4.6 Long Short-Term Memory........................................................... 4.7 References and Further Readings.............................................. 4.8 Written Exercises.......................................................................... 71 71 76 78 79 82 88 92 92 5 Sequence-to-Sequence Learning 95 5.1 The Seq2Seq Paradigm................................................................. 96 5.2 Writing a Seq2Seq MT program.................................................. 99 5.3 Attention in Seq2seq.......................................................................102 5.4 Multilength
Seq2Seq.......................................................................107 5.5 Programming Exercise....................................................................108 5.6 Written Exercises............................................................................. 110 5.7 References and Further Readings................................................. Ill 6 Deep Reinforcement Learning 113 6.1 Value Iteration................................................................................ 114 6.2 Q-learning......................................................................................... 117 6.3 Basic Deep-Q Learning....................................................................119 6.4 Policy Gradient Methods ............................................................. 124 6.5 Actor-Critic Methods ....................................................................130 6.6 Experience Replay..........................................................................133 6.7 References and Further Readings................................................. 134 6.8 Written Exercises....................................................... 134 7 Unsupervised Neural-Network Models 137 7.1 Basic Autoencoding .......................................................................137 7.2 Convolutional Autoencoding.......................................................... 140 7.3 Variational Autoencoding............................................................. 144 7.4 Generative Adversarial Networks................................................. 152 3.5 3.6
CONTENTS 7.5 7.6 ix References and Further Readings................................................. 157 Written Exercises.............................................................................157 A Answers to Selected Exercises 159 A.l Chapter 1........................................................................................ 159 A.2 Chapter 2........................................................................................ 160 A.3 Chapter 3........................................................................................ 160 A.4 Chapter 4........................................................................................ 161 A.5 Chapter 5........................................................................................ 161 A.6 Chapter 6........................................................................................ 162 A.7 Chapter 7........................................................................................ 162 Bibliography 165 Index 169
|
any_adam_object | 1 |
author | Charniak, Eugene 1946- |
author_GND | (DE-588)1183007523 |
author_facet | Charniak, Eugene 1946- |
author_role | aut |
author_sort | Charniak, Eugene 1946- |
author_variant | e c ec |
building | Verbundindex |
bvnumber | BV045387447 |
classification_rvk | ST 300 |
ctrlnum | (OCoLC)1098189657 (DE-599)BVBBV045387447 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01369nam a2200325 c 4500</leader><controlfield tag="001">BV045387447</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190508 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">190107s2018 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262039516</subfield><subfield code="9">0-262-03951-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262039512</subfield><subfield code="9">978-0-262-03951-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1098189657</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045387447</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-525</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Charniak, Eugene</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1183007523</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to deep learning</subfield><subfield code="c">Eugene Charniak</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Massachusetts ; London, England</subfield><subfield code="b">The MIT Press</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 174 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030773779&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030773779</subfield></datafield></record></collection> |
id | DE-604.BV045387447 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:16:46Z |
institution | BVB |
isbn | 0262039516 9780262039512 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030773779 |
oclc_num | 1098189657 |
open_access_boolean | |
owner | DE-11 DE-384 DE-83 DE-523 DE-Aug4 DE-29T DE-525 DE-1028 DE-739 |
owner_facet | DE-11 DE-384 DE-83 DE-523 DE-Aug4 DE-29T DE-525 DE-1028 DE-739 |
physical | xii, 174 Seiten Illustrationen, Diagramme |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | The MIT Press |
record_format | marc |
spelling | Charniak, Eugene 1946- Verfasser (DE-588)1183007523 aut Introduction to deep learning Eugene Charniak Cambridge, Massachusetts ; London, England The MIT Press [2018] xii, 174 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 s DE-604 Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030773779&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Charniak, Eugene 1946- Introduction to deep learning Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4193754-5 |
title | Introduction to deep learning |
title_auth | Introduction to deep learning |
title_exact_search | Introduction to deep learning |
title_full | Introduction to deep learning Eugene Charniak |
title_fullStr | Introduction to deep learning Eugene Charniak |
title_full_unstemmed | Introduction to deep learning Eugene Charniak |
title_short | Introduction to deep learning |
title_sort | introduction to deep learning |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Maschinelles Lernen |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030773779&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT charniakeugene introductiontodeeplearning |