Introduction to finite and infinite dimensional lie (super)algebras:
Lie superalgebras are a natural generalization of Lie algebras, having applications in geometry, number theory, gauge field theory, and string theory. Introduction to Finite and Infinite Dimensional Lie Algebras and Superalgebras introduces the theory of Lie superalgebras, their algebras, and their...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier
2016
|
Schlagworte: | |
Online-Zugang: | URL des Erstveröffentlichers |
Zusammenfassung: | Lie superalgebras are a natural generalization of Lie algebras, having applications in geometry, number theory, gauge field theory, and string theory. Introduction to Finite and Infinite Dimensional Lie Algebras and Superalgebras introduces the theory of Lie superalgebras, their algebras, and their representations. The material covered ranges from basic definitions of Lie groups to the classification of finite-dimensional representations of semi-simple Lie algebras. While discussing all classes of finite and infinite dimensional Lie algebras and Lie superalgebras in terms of their different classes of root systems, the book focuses on Kac-Moody algebras. With numerous exercises and worked examples, it is ideal for graduate courses on Lie groups and Lie algebras. Discusses the fundamental structure and all root relationships of Lie algebras and Lie superalgebras and their finite and infinite dimensional representation theory Closely describes BKM Lie superalgebras, their different classes of imaginary root systems, their complete classifications, root-supermultiplicities, and related combinatorial identities Includes numerous tables of the properties of individual Lie algebras and Lie superalgebras Focuses on Kac-Moody algebras |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 online resource |
ISBN: | 9780128046838 012804683X |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045381738 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 181228s2016 |||| o||u| ||||||eng d | ||
020 | |a 9780128046838 |9 978-0-12-804683-8 | ||
020 | |a 012804683X |9 0-12-804683-X | ||
035 | |a (ZDB-33-ESD)ocn948296975 | ||
035 | |a (ZDB-33-EBS)ocn948296975 | ||
035 | |a (OCoLC)948296975 | ||
035 | |a (DE-599)BVBBV045381738 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 512/.55 |2 23 | |
100 | 1 | |a Sthanumoorthy, N. |d 1945- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to finite and infinite dimensional lie (super)algebras |c N. Sthanumoorthy |
264 | 1 | |a Amsterdam |b Elsevier |c 2016 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | |a Lie superalgebras are a natural generalization of Lie algebras, having applications in geometry, number theory, gauge field theory, and string theory. Introduction to Finite and Infinite Dimensional Lie Algebras and Superalgebras introduces the theory of Lie superalgebras, their algebras, and their representations. The material covered ranges from basic definitions of Lie groups to the classification of finite-dimensional representations of semi-simple Lie algebras. While discussing all classes of finite and infinite dimensional Lie algebras and Lie superalgebras in terms of their different classes of root systems, the book focuses on Kac-Moody algebras. With numerous exercises and worked examples, it is ideal for graduate courses on Lie groups and Lie algebras. Discusses the fundamental structure and all root relationships of Lie algebras and Lie superalgebras and their finite and infinite dimensional representation theory Closely describes BKM Lie superalgebras, their different classes of imaginary root systems, their complete classifications, root-supermultiplicities, and related combinatorial identities Includes numerous tables of the properties of individual Lie algebras and Lie superalgebras Focuses on Kac-Moody algebras | ||
650 | 7 | |a MATHEMATICS / Algebra / Intermediate |2 bisacsh | |
650 | 7 | |a Lie algebras |2 fast | |
650 | 4 | |a Lie algebras | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780128046753 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0128046759 |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780128046753 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030768071 | ||
347 | |a text file |2 rda |
Datensatz im Suchindex
_version_ | 1804179232836812800 |
---|---|
any_adam_object | |
author | Sthanumoorthy, N. 1945- |
author_facet | Sthanumoorthy, N. 1945- |
author_role | aut |
author_sort | Sthanumoorthy, N. 1945- |
author_variant | n s ns |
building | Verbundindex |
bvnumber | BV045381738 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-ESD)ocn948296975 (ZDB-33-EBS)ocn948296975 (OCoLC)948296975 (DE-599)BVBBV045381738 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02652nmm a2200409zc 4500</leader><controlfield tag="001">BV045381738</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181228s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128046838</subfield><subfield code="9">978-0-12-804683-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">012804683X</subfield><subfield code="9">0-12-804683-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-ESD)ocn948296975</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn948296975</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)948296975</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045381738</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sthanumoorthy, N.</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to finite and infinite dimensional lie (super)algebras</subfield><subfield code="c">N. Sthanumoorthy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Lie superalgebras are a natural generalization of Lie algebras, having applications in geometry, number theory, gauge field theory, and string theory. Introduction to Finite and Infinite Dimensional Lie Algebras and Superalgebras introduces the theory of Lie superalgebras, their algebras, and their representations. The material covered ranges from basic definitions of Lie groups to the classification of finite-dimensional representations of semi-simple Lie algebras. While discussing all classes of finite and infinite dimensional Lie algebras and Lie superalgebras in terms of their different classes of root systems, the book focuses on Kac-Moody algebras. With numerous exercises and worked examples, it is ideal for graduate courses on Lie groups and Lie algebras. Discusses the fundamental structure and all root relationships of Lie algebras and Lie superalgebras and their finite and infinite dimensional representation theory Closely describes BKM Lie superalgebras, their different classes of imaginary root systems, their complete classifications, root-supermultiplicities, and related combinatorial identities Includes numerous tables of the properties of individual Lie algebras and Lie superalgebras Focuses on Kac-Moody algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Intermediate</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebras</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780128046753</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0128046759</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780128046753</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030768071</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="2">rda</subfield></datafield></record></collection> |
id | DE-604.BV045381738 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:16:36Z |
institution | BVB |
isbn | 9780128046838 012804683X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030768071 |
oclc_num | 948296975 |
open_access_boolean | |
physical | 1 online resource |
psigel | ZDB-33-ESD ZDB-33-EBS |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Elsevier |
record_format | marc |
spelling | Sthanumoorthy, N. 1945- Verfasser aut Introduction to finite and infinite dimensional lie (super)algebras N. Sthanumoorthy Amsterdam Elsevier 2016 1 online resource txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index Lie superalgebras are a natural generalization of Lie algebras, having applications in geometry, number theory, gauge field theory, and string theory. Introduction to Finite and Infinite Dimensional Lie Algebras and Superalgebras introduces the theory of Lie superalgebras, their algebras, and their representations. The material covered ranges from basic definitions of Lie groups to the classification of finite-dimensional representations of semi-simple Lie algebras. While discussing all classes of finite and infinite dimensional Lie algebras and Lie superalgebras in terms of their different classes of root systems, the book focuses on Kac-Moody algebras. With numerous exercises and worked examples, it is ideal for graduate courses on Lie groups and Lie algebras. Discusses the fundamental structure and all root relationships of Lie algebras and Lie superalgebras and their finite and infinite dimensional representation theory Closely describes BKM Lie superalgebras, their different classes of imaginary root systems, their complete classifications, root-supermultiplicities, and related combinatorial identities Includes numerous tables of the properties of individual Lie algebras and Lie superalgebras Focuses on Kac-Moody algebras MATHEMATICS / Algebra / Intermediate bisacsh Lie algebras fast Lie algebras Erscheint auch als Druck-Ausgabe 9780128046753 Erscheint auch als Druck-Ausgabe 0128046759 http://www.sciencedirect.com/science/book/9780128046753 Verlag URL des Erstveröffentlichers Volltext text file rda |
spellingShingle | Sthanumoorthy, N. 1945- Introduction to finite and infinite dimensional lie (super)algebras MATHEMATICS / Algebra / Intermediate bisacsh Lie algebras fast Lie algebras |
title | Introduction to finite and infinite dimensional lie (super)algebras |
title_auth | Introduction to finite and infinite dimensional lie (super)algebras |
title_exact_search | Introduction to finite and infinite dimensional lie (super)algebras |
title_full | Introduction to finite and infinite dimensional lie (super)algebras N. Sthanumoorthy |
title_fullStr | Introduction to finite and infinite dimensional lie (super)algebras N. Sthanumoorthy |
title_full_unstemmed | Introduction to finite and infinite dimensional lie (super)algebras N. Sthanumoorthy |
title_short | Introduction to finite and infinite dimensional lie (super)algebras |
title_sort | introduction to finite and infinite dimensional lie super algebras |
topic | MATHEMATICS / Algebra / Intermediate bisacsh Lie algebras fast Lie algebras |
topic_facet | MATHEMATICS / Algebra / Intermediate Lie algebras |
url | http://www.sciencedirect.com/science/book/9780128046753 |
work_keys_str_mv | AT sthanumoorthyn introductiontofiniteandinfinitedimensionalliesuperalgebras |