Learning Big Data with Amazon Elastic MapReduce:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Packt Publishing
2014
|
Schlagworte: | |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource |
ISBN: | 1322242186 9781322242187 9781782173441 1782173447 9781782173434 1782173439 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045350961 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 181210s2014 |||| o||u| ||||||eng d | ||
020 | |a 1322242186 |9 1-322-24218-6 | ||
020 | |a 9781322242187 |9 978-1-322-24218-7 | ||
020 | |a 9781782173441 |9 978-1-78217-344-1 | ||
020 | |a 1782173447 |9 1-78217-344-7 | ||
020 | |a 9781782173434 |9 978-1-78217-343-4 | ||
020 | |a 1782173439 |9 1-78217-343-9 | ||
024 | 3 | |a 9781782173434 | |
035 | |a (ZDB-4-ITC)ocn894628948 | ||
035 | |a (OCoLC)894628948 | ||
035 | |a (DE-599)BVBBV045350961 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 004.109236 | |
100 | 1 | |a Singh, Amarkant |e Verfasser |4 aut | |
245 | 1 | 0 | |a Learning Big Data with Amazon Elastic MapReduce |
264 | 1 | |b Packt Publishing |c 2014 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Print version record | ||
505 | 8 | |a Amazon Elastic MapReduce is a web service used to process and store vast amount of data, and it is one of the largest Hadoop operators in the world. With the increase in the amount of data generated and collected by many businesses and the arrival of cost-effective cloud-based solutions for distributed computing, the feasibility to crunch large amounts of data to get deep insights within a short span of time has increased greatly. This book will get you started with AWS so that you can quickly create your own account and explore the services provided, many of which you might be delighted to use. This book covers the architectural details of the MapReduce framework, Apache Hadoop, various job models on EMR, how to manage clusters on EMR, and the command-line tools available with EMR. Each chapter builds on the knowledge of the previous one, leading to the final chapter where you will learn about solving a real-world use case using Apache Hadoop and EMR. This book will, therefore, get you up and running with major Big Data technologies quickly and efficiently | |
630 | 0 | 4 | |a MapReduce (Computer file) |
650 | 7 | |a MapReduce (Computer file) |2 fast | |
650 | 7 | |a COMPUTERS / Computer Literacy |2 bisacsh | |
650 | 7 | |a COMPUTERS / Computer Science |2 bisacsh | |
650 | 7 | |a COMPUTERS / Data Processing |2 bisacsh | |
650 | 7 | |a COMPUTERS / Hardware / General |2 bisacsh | |
650 | 7 | |a COMPUTERS / Information Technology |2 bisacsh | |
650 | 7 | |a COMPUTERS / Machine Theory |2 bisacsh | |
650 | 7 | |a COMPUTERS / Reference |2 bisacsh | |
650 | 7 | |a Big data |2 fast | |
650 | 4 | |a Big data | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |n Druck-Ausgabe |t Singh, Amarkant. Learning Big Data with Amazon Elastic MapReduce |
912 | |a ZDB-4-ITC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030737615 |
Datensatz im Suchindex
_version_ | 1804179176030208000 |
---|---|
any_adam_object | |
author | Singh, Amarkant |
author_facet | Singh, Amarkant |
author_role | aut |
author_sort | Singh, Amarkant |
author_variant | a s as |
building | Verbundindex |
bvnumber | BV045350961 |
collection | ZDB-4-ITC |
contents | Amazon Elastic MapReduce is a web service used to process and store vast amount of data, and it is one of the largest Hadoop operators in the world. With the increase in the amount of data generated and collected by many businesses and the arrival of cost-effective cloud-based solutions for distributed computing, the feasibility to crunch large amounts of data to get deep insights within a short span of time has increased greatly. This book will get you started with AWS so that you can quickly create your own account and explore the services provided, many of which you might be delighted to use. This book covers the architectural details of the MapReduce framework, Apache Hadoop, various job models on EMR, how to manage clusters on EMR, and the command-line tools available with EMR. Each chapter builds on the knowledge of the previous one, leading to the final chapter where you will learn about solving a real-world use case using Apache Hadoop and EMR. This book will, therefore, get you up and running with major Big Data technologies quickly and efficiently |
ctrlnum | (ZDB-4-ITC)ocn894628948 (OCoLC)894628948 (DE-599)BVBBV045350961 |
dewey-full | 004.109236 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.109236 |
dewey-search | 004.109236 |
dewey-sort | 14.109236 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02809nmm a2200517zc 4500</leader><controlfield tag="001">BV045350961</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181210s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1322242186</subfield><subfield code="9">1-322-24218-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781322242187</subfield><subfield code="9">978-1-322-24218-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781782173441</subfield><subfield code="9">978-1-78217-344-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1782173447</subfield><subfield code="9">1-78217-344-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781782173434</subfield><subfield code="9">978-1-78217-343-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1782173439</subfield><subfield code="9">1-78217-343-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781782173434</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-ITC)ocn894628948</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)894628948</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045350961</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.109236</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Singh, Amarkant</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning Big Data with Amazon Elastic MapReduce</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">Packt Publishing</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Amazon Elastic MapReduce is a web service used to process and store vast amount of data, and it is one of the largest Hadoop operators in the world. With the increase in the amount of data generated and collected by many businesses and the arrival of cost-effective cloud-based solutions for distributed computing, the feasibility to crunch large amounts of data to get deep insights within a short span of time has increased greatly. This book will get you started with AWS so that you can quickly create your own account and explore the services provided, many of which you might be delighted to use. This book covers the architectural details of the MapReduce framework, Apache Hadoop, various job models on EMR, how to manage clusters on EMR, and the command-line tools available with EMR. Each chapter builds on the knowledge of the previous one, leading to the final chapter where you will learn about solving a real-world use case using Apache Hadoop and EMR. This book will, therefore, get you up and running with major Big Data technologies quickly and efficiently</subfield></datafield><datafield tag="630" ind1="0" ind2="4"><subfield code="a">MapReduce (Computer file)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MapReduce (Computer file)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Computer Literacy</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Computer Science</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Data Processing</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Hardware / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Information Technology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Machine Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Reference</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Big data</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="t">Singh, Amarkant. Learning Big Data with Amazon Elastic MapReduce</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-ITC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030737615</subfield></datafield></record></collection> |
id | DE-604.BV045350961 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:15:42Z |
institution | BVB |
isbn | 1322242186 9781322242187 9781782173441 1782173447 9781782173434 1782173439 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030737615 |
oclc_num | 894628948 |
open_access_boolean | |
physical | 1 online resource |
psigel | ZDB-4-ITC |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Packt Publishing |
record_format | marc |
spelling | Singh, Amarkant Verfasser aut Learning Big Data with Amazon Elastic MapReduce Packt Publishing 2014 1 online resource txt rdacontent c rdamedia cr rdacarrier Print version record Amazon Elastic MapReduce is a web service used to process and store vast amount of data, and it is one of the largest Hadoop operators in the world. With the increase in the amount of data generated and collected by many businesses and the arrival of cost-effective cloud-based solutions for distributed computing, the feasibility to crunch large amounts of data to get deep insights within a short span of time has increased greatly. This book will get you started with AWS so that you can quickly create your own account and explore the services provided, many of which you might be delighted to use. This book covers the architectural details of the MapReduce framework, Apache Hadoop, various job models on EMR, how to manage clusters on EMR, and the command-line tools available with EMR. Each chapter builds on the knowledge of the previous one, leading to the final chapter where you will learn about solving a real-world use case using Apache Hadoop and EMR. This book will, therefore, get you up and running with major Big Data technologies quickly and efficiently MapReduce (Computer file) MapReduce (Computer file) fast COMPUTERS / Computer Literacy bisacsh COMPUTERS / Computer Science bisacsh COMPUTERS / Data Processing bisacsh COMPUTERS / Hardware / General bisacsh COMPUTERS / Information Technology bisacsh COMPUTERS / Machine Theory bisacsh COMPUTERS / Reference bisacsh Big data fast Big data Erscheint auch als Druck-Ausgabe Druck-Ausgabe Singh, Amarkant. Learning Big Data with Amazon Elastic MapReduce |
spellingShingle | Singh, Amarkant Learning Big Data with Amazon Elastic MapReduce Amazon Elastic MapReduce is a web service used to process and store vast amount of data, and it is one of the largest Hadoop operators in the world. With the increase in the amount of data generated and collected by many businesses and the arrival of cost-effective cloud-based solutions for distributed computing, the feasibility to crunch large amounts of data to get deep insights within a short span of time has increased greatly. This book will get you started with AWS so that you can quickly create your own account and explore the services provided, many of which you might be delighted to use. This book covers the architectural details of the MapReduce framework, Apache Hadoop, various job models on EMR, how to manage clusters on EMR, and the command-line tools available with EMR. Each chapter builds on the knowledge of the previous one, leading to the final chapter where you will learn about solving a real-world use case using Apache Hadoop and EMR. This book will, therefore, get you up and running with major Big Data technologies quickly and efficiently MapReduce (Computer file) MapReduce (Computer file) fast COMPUTERS / Computer Literacy bisacsh COMPUTERS / Computer Science bisacsh COMPUTERS / Data Processing bisacsh COMPUTERS / Hardware / General bisacsh COMPUTERS / Information Technology bisacsh COMPUTERS / Machine Theory bisacsh COMPUTERS / Reference bisacsh Big data fast Big data |
title | Learning Big Data with Amazon Elastic MapReduce |
title_auth | Learning Big Data with Amazon Elastic MapReduce |
title_exact_search | Learning Big Data with Amazon Elastic MapReduce |
title_full | Learning Big Data with Amazon Elastic MapReduce |
title_fullStr | Learning Big Data with Amazon Elastic MapReduce |
title_full_unstemmed | Learning Big Data with Amazon Elastic MapReduce |
title_short | Learning Big Data with Amazon Elastic MapReduce |
title_sort | learning big data with amazon elastic mapreduce |
topic | MapReduce (Computer file) MapReduce (Computer file) fast COMPUTERS / Computer Literacy bisacsh COMPUTERS / Computer Science bisacsh COMPUTERS / Data Processing bisacsh COMPUTERS / Hardware / General bisacsh COMPUTERS / Information Technology bisacsh COMPUTERS / Machine Theory bisacsh COMPUTERS / Reference bisacsh Big data fast Big data |
topic_facet | MapReduce (Computer file) COMPUTERS / Computer Literacy COMPUTERS / Computer Science COMPUTERS / Data Processing COMPUTERS / Hardware / General COMPUTERS / Information Technology COMPUTERS / Machine Theory COMPUTERS / Reference Big data |
work_keys_str_mv | AT singhamarkant learningbigdatawithamazonelasticmapreduce |