Simulation:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
Academic Press
2013
|
Ausgabe: | Fifth edition |
Schlagworte: | |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (xii, 310 pages) illustrations |
ISBN: | 0124159710 9780124159716 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045349783 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 181210s2013 |||| o||u| ||||||eng d | ||
020 | |a 0124159710 |9 0-12-415971-0 | ||
020 | |a 9780124159716 |9 978-0-12-415971-6 | ||
035 | |a (ZDB-4-ITC)ocn818733978 | ||
035 | |a (OCoLC)818733978 | ||
035 | |a (DE-599)BVBBV045349783 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 519.2 |2 23 | |
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a ST 340 |0 (DE-625)143665: |2 rvk | ||
100 | 1 | |a Ross, Sheldon M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Simulation |c Sheldon M. Ross, Epstein Department of Industrial and Systems Engineering, University of Southern California |
250 | |a Fifth edition | ||
264 | 1 | |a Amsterdam |b Academic Press |c 2013 | |
300 | |a 1 online resource (xii, 310 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Print version record | ||
505 | 8 | |a "In formulating a stochastic model to describe a real phenomenon, it used to be that one compromised between choosing a model that is a realistic replica of the actual situation and choosing one whose mathematical analysis is tractable. That is, there did not seem to be any payoff in choosing a model that faithfully conformed to the phenomenon under study if it were not possible to mathematically analyze that model. Similar considerations have led to the concentration on asymptotic or steady-state results as opposed to the more useful ones on transient time. However, the relatively recent advent of fast and inexpensive computational power has opened up another approach--namely, to try to model the phenomenon as faithfully as possible and then to rely on a simulation study to analyze it"-- | |
650 | 7 | |a MATHEMATICS / Probability & Statistics / General |2 bisacsh | |
650 | 7 | |a Computer simulation |2 fast | |
650 | 7 | |a Probabilities |2 fast | |
650 | 7 | |a Random variables |2 fast | |
650 | 4 | |a Random variables |a Probabilities |a Computer simulation | |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Simulation |0 (DE-588)4055072-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computersimulation |0 (DE-588)4148259-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Monte-Carlo-Simulation |0 (DE-588)4240945-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 0 | 1 | |a Computersimulation |0 (DE-588)4148259-1 |D s |
689 | 0 | 2 | |a Monte-Carlo-Simulation |0 (DE-588)4240945-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Simulation |0 (DE-588)4055072-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Ross, Sheldon M. |t Simulation |b Fifth edition |z 9780124158252 |
912 | |a ZDB-4-ITC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030736437 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804179173954027520 |
---|---|
any_adam_object | |
author | Ross, Sheldon M. |
author_facet | Ross, Sheldon M. |
author_role | aut |
author_sort | Ross, Sheldon M. |
author_variant | s m r sm smr |
building | Verbundindex |
bvnumber | BV045349783 |
classification_rvk | SK 820 ST 340 |
collection | ZDB-4-ITC |
contents | "In formulating a stochastic model to describe a real phenomenon, it used to be that one compromised between choosing a model that is a realistic replica of the actual situation and choosing one whose mathematical analysis is tractable. That is, there did not seem to be any payoff in choosing a model that faithfully conformed to the phenomenon under study if it were not possible to mathematically analyze that model. Similar considerations have led to the concentration on asymptotic or steady-state results as opposed to the more useful ones on transient time. However, the relatively recent advent of fast and inexpensive computational power has opened up another approach--namely, to try to model the phenomenon as faithfully as possible and then to rely on a simulation study to analyze it"-- |
ctrlnum | (ZDB-4-ITC)ocn818733978 (OCoLC)818733978 (DE-599)BVBBV045349783 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
edition | Fifth edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03015nmm a2200565zc 4500</leader><controlfield tag="001">BV045349783</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181210s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0124159710</subfield><subfield code="9">0-12-415971-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780124159716</subfield><subfield code="9">978-0-12-415971-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-ITC)ocn818733978</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)818733978</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045349783</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 340</subfield><subfield code="0">(DE-625)143665:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ross, Sheldon M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simulation</subfield><subfield code="c">Sheldon M. Ross, Epstein Department of Industrial and Systems Engineering, University of Southern California</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Fifth edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Academic Press</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 310 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">"In formulating a stochastic model to describe a real phenomenon, it used to be that one compromised between choosing a model that is a realistic replica of the actual situation and choosing one whose mathematical analysis is tractable. That is, there did not seem to be any payoff in choosing a model that faithfully conformed to the phenomenon under study if it were not possible to mathematically analyze that model. Similar considerations have led to the concentration on asymptotic or steady-state results as opposed to the more useful ones on transient time. However, the relatively recent advent of fast and inexpensive computational power has opened up another approach--namely, to try to model the phenomenon as faithfully as possible and then to rely on a simulation study to analyze it"--</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Probability & Statistics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer simulation</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Probabilities</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Random variables</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random variables</subfield><subfield code="a">Probabilities</subfield><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Simulation</subfield><subfield code="0">(DE-588)4055072-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Simulation</subfield><subfield code="0">(DE-588)4055072-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Ross, Sheldon M.</subfield><subfield code="t">Simulation</subfield><subfield code="b">Fifth edition</subfield><subfield code="z">9780124158252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-ITC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030736437</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV045349783 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:15:40Z |
institution | BVB |
isbn | 0124159710 9780124159716 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030736437 |
oclc_num | 818733978 |
open_access_boolean | |
physical | 1 online resource (xii, 310 pages) illustrations |
psigel | ZDB-4-ITC |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Academic Press |
record_format | marc |
spelling | Ross, Sheldon M. Verfasser aut Simulation Sheldon M. Ross, Epstein Department of Industrial and Systems Engineering, University of Southern California Fifth edition Amsterdam Academic Press 2013 1 online resource (xii, 310 pages) illustrations txt rdacontent c rdamedia cr rdacarrier Print version record "In formulating a stochastic model to describe a real phenomenon, it used to be that one compromised between choosing a model that is a realistic replica of the actual situation and choosing one whose mathematical analysis is tractable. That is, there did not seem to be any payoff in choosing a model that faithfully conformed to the phenomenon under study if it were not possible to mathematically analyze that model. Similar considerations have led to the concentration on asymptotic or steady-state results as opposed to the more useful ones on transient time. However, the relatively recent advent of fast and inexpensive computational power has opened up another approach--namely, to try to model the phenomenon as faithfully as possible and then to rely on a simulation study to analyze it"-- MATHEMATICS / Probability & Statistics / General bisacsh Computer simulation fast Probabilities fast Random variables fast Random variables Probabilities Computer simulation Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf Simulation (DE-588)4055072-2 gnd rswk-swf Computersimulation (DE-588)4148259-1 gnd rswk-swf Monte-Carlo-Simulation (DE-588)4240945-7 gnd rswk-swf Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s Computersimulation (DE-588)4148259-1 s Monte-Carlo-Simulation (DE-588)4240945-7 s 1\p DE-604 Simulation (DE-588)4055072-2 s 2\p DE-604 Erscheint auch als Druck-Ausgabe Ross, Sheldon M. Simulation Fifth edition 9780124158252 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ross, Sheldon M. Simulation "In formulating a stochastic model to describe a real phenomenon, it used to be that one compromised between choosing a model that is a realistic replica of the actual situation and choosing one whose mathematical analysis is tractable. That is, there did not seem to be any payoff in choosing a model that faithfully conformed to the phenomenon under study if it were not possible to mathematically analyze that model. Similar considerations have led to the concentration on asymptotic or steady-state results as opposed to the more useful ones on transient time. However, the relatively recent advent of fast and inexpensive computational power has opened up another approach--namely, to try to model the phenomenon as faithfully as possible and then to rely on a simulation study to analyze it"-- MATHEMATICS / Probability & Statistics / General bisacsh Computer simulation fast Probabilities fast Random variables fast Random variables Probabilities Computer simulation Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Simulation (DE-588)4055072-2 gnd Computersimulation (DE-588)4148259-1 gnd Monte-Carlo-Simulation (DE-588)4240945-7 gnd |
subject_GND | (DE-588)4064324-4 (DE-588)4055072-2 (DE-588)4148259-1 (DE-588)4240945-7 |
title | Simulation |
title_auth | Simulation |
title_exact_search | Simulation |
title_full | Simulation Sheldon M. Ross, Epstein Department of Industrial and Systems Engineering, University of Southern California |
title_fullStr | Simulation Sheldon M. Ross, Epstein Department of Industrial and Systems Engineering, University of Southern California |
title_full_unstemmed | Simulation Sheldon M. Ross, Epstein Department of Industrial and Systems Engineering, University of Southern California |
title_short | Simulation |
title_sort | simulation |
topic | MATHEMATICS / Probability & Statistics / General bisacsh Computer simulation fast Probabilities fast Random variables fast Random variables Probabilities Computer simulation Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Simulation (DE-588)4055072-2 gnd Computersimulation (DE-588)4148259-1 gnd Monte-Carlo-Simulation (DE-588)4240945-7 gnd |
topic_facet | MATHEMATICS / Probability & Statistics / General Computer simulation Probabilities Random variables Random variables Probabilities Computer simulation Wahrscheinlichkeitsrechnung Simulation Computersimulation Monte-Carlo-Simulation |
work_keys_str_mv | AT rosssheldonm simulation |