In pursuit of the traveling salesman: mathematics at the limits of computation
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton
Princeton University Press
2012
|
Schlagworte: | |
Beschreibung: | 1 online resource (xiii, 228 pages) illustrations (some color), color maps |
ISBN: | 9781400839599 1400839599 1283339773 9781283339773 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045349507 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 181210s2012 |||| o||u| ||||||eng d | ||
020 | |a 9781400839599 |9 978-1-4008-3959-9 | ||
020 | |a 1400839599 |9 1-4008-3959-9 | ||
020 | |a 1283339773 |9 1-283-33977-3 | ||
020 | |a 9781283339773 |9 978-1-283-33977-3 | ||
035 | |a (ZDB-4-ITC)ocn774285465 | ||
035 | |a (OCoLC)774285465 | ||
035 | |a (DE-599)BVBBV045349507 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 511/.5 |2 23 | |
084 | |a QH 462 |0 (DE-625)141598: |2 rvk | ||
084 | |a SG 590 |0 (DE-625)143069: |2 rvk | ||
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
084 | |a SK 970 |0 (DE-625)143276: |2 rvk | ||
100 | 1 | |a Cook, William |d 1957- |e Verfasser |4 aut | |
245 | 1 | 0 | |a In pursuit of the traveling salesman |b mathematics at the limits of computation |c William J. Cook |
264 | 1 | |a Princeton |b Princeton University Press |c 2012 | |
300 | |a 1 online resource (xiii, 228 pages) |b illustrations (some color), color maps | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a "What is the shortest possible route for a traveling salesman seeking to visit each city on a list exactly once and return to his city of origin? It sounds simple enough, yet the traveling salesman problem is one of the most intensely studied puzzles in applied mathematics--and it has defied solution to this day. In this book, William Cook takes readers on a mathematical excursion, picking up the salesman's trail in the 1800s when Irish mathematician W.R. Hamilton first defined the problem, and venturing to the furthest limits of today's state-of-the-art attempts to solve it. Cook examines the origins and history of the salesman problem and explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets. He looks at how computers stack up against the traveling salesman problem on a grand scale, and discusses how humans, unaided by computers, go about trying to solve the puzzle. Cook traces the salesman problem to the realms of neuroscience, psychology, and art, and he also challenges readers to tackle the problem themselves. The traveling salesman problem is--literally--a | |
648 | 7 | |a Geschichte |2 gnd |9 rswk-swf | |
648 | 7 | |a Geschichte 1800-2000 |2 gnd |9 rswk-swf | |
650 | 7 | |a MATHEMATICS / Graphic Methods |2 bisacsh | |
650 | 7 | |a MATHEMATICS / General |2 bisacsh | |
650 | 7 | |a Computational complexity |2 fast | |
650 | 7 | |a Traveling salesman problem |2 fast | |
650 | 4 | |a Traveling salesman problem |a Computational complexity | |
650 | 0 | 7 | |a Travelling-salesman-Problem |0 (DE-588)4185966-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Travelling-salesman-Problem |0 (DE-588)4185966-2 |D s |
689 | 0 | 1 | |a Geschichte 1800-2000 |A z |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Travelling-salesman-Problem |0 (DE-588)4185966-2 |D s |
689 | 1 | 1 | |a Geschichte |A z |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780691152707 |
912 | |a ZDB-4-ITC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030736161 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804179173457002496 |
---|---|
any_adam_object | |
author | Cook, William 1957- |
author_facet | Cook, William 1957- |
author_role | aut |
author_sort | Cook, William 1957- |
author_variant | w c wc |
building | Verbundindex |
bvnumber | BV045349507 |
classification_rvk | QH 462 SG 590 SK 890 SK 970 |
collection | ZDB-4-ITC |
contents | "What is the shortest possible route for a traveling salesman seeking to visit each city on a list exactly once and return to his city of origin? It sounds simple enough, yet the traveling salesman problem is one of the most intensely studied puzzles in applied mathematics--and it has defied solution to this day. In this book, William Cook takes readers on a mathematical excursion, picking up the salesman's trail in the 1800s when Irish mathematician W.R. Hamilton first defined the problem, and venturing to the furthest limits of today's state-of-the-art attempts to solve it. Cook examines the origins and history of the salesman problem and explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets. He looks at how computers stack up against the traveling salesman problem on a grand scale, and discusses how humans, unaided by computers, go about trying to solve the puzzle. Cook traces the salesman problem to the realms of neuroscience, psychology, and art, and he also challenges readers to tackle the problem themselves. The traveling salesman problem is--literally--a |
ctrlnum | (ZDB-4-ITC)ocn774285465 (OCoLC)774285465 (DE-599)BVBBV045349507 |
dewey-full | 511/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.5 |
dewey-search | 511/.5 |
dewey-sort | 3511 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
era | Geschichte gnd Geschichte 1800-2000 gnd |
era_facet | Geschichte Geschichte 1800-2000 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03245nmm a2200565zc 4500</leader><controlfield tag="001">BV045349507</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181210s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400839599</subfield><subfield code="9">978-1-4008-3959-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400839599</subfield><subfield code="9">1-4008-3959-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283339773</subfield><subfield code="9">1-283-33977-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283339773</subfield><subfield code="9">978-1-283-33977-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-ITC)ocn774285465</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)774285465</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045349507</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 462</subfield><subfield code="0">(DE-625)141598:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SG 590</subfield><subfield code="0">(DE-625)143069:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 970</subfield><subfield code="0">(DE-625)143276:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cook, William</subfield><subfield code="d">1957-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">In pursuit of the traveling salesman</subfield><subfield code="b">mathematics at the limits of computation</subfield><subfield code="c">William J. Cook</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 228 pages)</subfield><subfield code="b">illustrations (some color), color maps</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">"What is the shortest possible route for a traveling salesman seeking to visit each city on a list exactly once and return to his city of origin? It sounds simple enough, yet the traveling salesman problem is one of the most intensely studied puzzles in applied mathematics--and it has defied solution to this day. In this book, William Cook takes readers on a mathematical excursion, picking up the salesman's trail in the 1800s when Irish mathematician W.R. Hamilton first defined the problem, and venturing to the furthest limits of today's state-of-the-art attempts to solve it. Cook examines the origins and history of the salesman problem and explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets. He looks at how computers stack up against the traveling salesman problem on a grand scale, and discusses how humans, unaided by computers, go about trying to solve the puzzle. Cook traces the salesman problem to the realms of neuroscience, psychology, and art, and he also challenges readers to tackle the problem themselves. The traveling salesman problem is--literally--a</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte 1800-2000</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Graphic Methods</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computational complexity</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Traveling salesman problem</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traveling salesman problem</subfield><subfield code="a">Computational complexity</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Travelling-salesman-Problem</subfield><subfield code="0">(DE-588)4185966-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Travelling-salesman-Problem</subfield><subfield code="0">(DE-588)4185966-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichte 1800-2000</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Travelling-salesman-Problem</subfield><subfield code="0">(DE-588)4185966-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Geschichte</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780691152707</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-ITC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030736161</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV045349507 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:15:39Z |
institution | BVB |
isbn | 9781400839599 1400839599 1283339773 9781283339773 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030736161 |
oclc_num | 774285465 |
open_access_boolean | |
physical | 1 online resource (xiii, 228 pages) illustrations (some color), color maps |
psigel | ZDB-4-ITC |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Princeton University Press |
record_format | marc |
spelling | Cook, William 1957- Verfasser aut In pursuit of the traveling salesman mathematics at the limits of computation William J. Cook Princeton Princeton University Press 2012 1 online resource (xiii, 228 pages) illustrations (some color), color maps txt rdacontent c rdamedia cr rdacarrier "What is the shortest possible route for a traveling salesman seeking to visit each city on a list exactly once and return to his city of origin? It sounds simple enough, yet the traveling salesman problem is one of the most intensely studied puzzles in applied mathematics--and it has defied solution to this day. In this book, William Cook takes readers on a mathematical excursion, picking up the salesman's trail in the 1800s when Irish mathematician W.R. Hamilton first defined the problem, and venturing to the furthest limits of today's state-of-the-art attempts to solve it. Cook examines the origins and history of the salesman problem and explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets. He looks at how computers stack up against the traveling salesman problem on a grand scale, and discusses how humans, unaided by computers, go about trying to solve the puzzle. Cook traces the salesman problem to the realms of neuroscience, psychology, and art, and he also challenges readers to tackle the problem themselves. The traveling salesman problem is--literally--a Geschichte gnd rswk-swf Geschichte 1800-2000 gnd rswk-swf MATHEMATICS / Graphic Methods bisacsh MATHEMATICS / General bisacsh Computational complexity fast Traveling salesman problem fast Traveling salesman problem Computational complexity Travelling-salesman-Problem (DE-588)4185966-2 gnd rswk-swf Travelling-salesman-Problem (DE-588)4185966-2 s Geschichte 1800-2000 z 1\p DE-604 Geschichte z DE-604 Erscheint auch als Druck-Ausgabe 9780691152707 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cook, William 1957- In pursuit of the traveling salesman mathematics at the limits of computation "What is the shortest possible route for a traveling salesman seeking to visit each city on a list exactly once and return to his city of origin? It sounds simple enough, yet the traveling salesman problem is one of the most intensely studied puzzles in applied mathematics--and it has defied solution to this day. In this book, William Cook takes readers on a mathematical excursion, picking up the salesman's trail in the 1800s when Irish mathematician W.R. Hamilton first defined the problem, and venturing to the furthest limits of today's state-of-the-art attempts to solve it. Cook examines the origins and history of the salesman problem and explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets. He looks at how computers stack up against the traveling salesman problem on a grand scale, and discusses how humans, unaided by computers, go about trying to solve the puzzle. Cook traces the salesman problem to the realms of neuroscience, psychology, and art, and he also challenges readers to tackle the problem themselves. The traveling salesman problem is--literally--a MATHEMATICS / Graphic Methods bisacsh MATHEMATICS / General bisacsh Computational complexity fast Traveling salesman problem fast Traveling salesman problem Computational complexity Travelling-salesman-Problem (DE-588)4185966-2 gnd |
subject_GND | (DE-588)4185966-2 |
title | In pursuit of the traveling salesman mathematics at the limits of computation |
title_auth | In pursuit of the traveling salesman mathematics at the limits of computation |
title_exact_search | In pursuit of the traveling salesman mathematics at the limits of computation |
title_full | In pursuit of the traveling salesman mathematics at the limits of computation William J. Cook |
title_fullStr | In pursuit of the traveling salesman mathematics at the limits of computation William J. Cook |
title_full_unstemmed | In pursuit of the traveling salesman mathematics at the limits of computation William J. Cook |
title_short | In pursuit of the traveling salesman |
title_sort | in pursuit of the traveling salesman mathematics at the limits of computation |
title_sub | mathematics at the limits of computation |
topic | MATHEMATICS / Graphic Methods bisacsh MATHEMATICS / General bisacsh Computational complexity fast Traveling salesman problem fast Traveling salesman problem Computational complexity Travelling-salesman-Problem (DE-588)4185966-2 gnd |
topic_facet | MATHEMATICS / Graphic Methods MATHEMATICS / General Computational complexity Traveling salesman problem Traveling salesman problem Computational complexity Travelling-salesman-Problem |
work_keys_str_mv | AT cookwilliam inpursuitofthetravelingsalesmanmathematicsatthelimitsofcomputation |