The Traveling Salesman Problem: a Computational Study
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton
Princeton University Press
2011
|
Schriftenreihe: | Princeton series in applied mathematics
|
Schlagworte: | |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (606 pages) |
ISBN: | 9781400841103 1400841100 0691129932 9780691129938 1283256118 9781283256117 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045349320 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 181210s2011 |||| o||u| ||||||eng d | ||
020 | |a 9781400841103 |9 978-1-4008-4110-3 | ||
020 | |a 1400841100 |9 1-4008-4110-0 | ||
020 | |a 0691129932 |9 0-691-12993-2 | ||
020 | |a 9780691129938 |9 978-0-691-12993-8 | ||
020 | |a 1283256118 |9 1-283-25611-8 | ||
020 | |a 9781283256117 |9 978-1-283-25611-7 | ||
035 | |a (ZDB-4-ITC)ocn749265038 | ||
035 | |a (OCoLC)749265038 | ||
035 | |a (DE-599)BVBBV045349320 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 511/.5 | |
084 | |a QH 462 |0 (DE-625)141598: |2 rvk | ||
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
100 | 1 | |a Applegate, David L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Traveling Salesman Problem |b a Computational Study |
264 | 1 | |a Princeton |b Princeton University Press |c 2011 | |
300 | |a 1 online resource (606 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Princeton series in applied mathematics | |
500 | |a Print version record | ||
505 | 8 | |a This book presents the latest findings on one of the most intensely investigated subjects in computational mathematics--the traveling salesman problem. It sounds simple enough: given a set of cities and the cost of travel between each pair of them, the problem challenges you to find the cheapest route by which to visit all the cities and return home to where you began. Though seemingly modest, this exercise has inspired studies by mathematicians, chemists, and physicists. Teachers use it in the classroom. It has practical applications in genetics, telecommunications, and neuroscience. The autho | |
546 | |a In English | ||
650 | 7 | |a MATHEMATICS / Graphic Methods |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Applied |2 bisacsh | |
650 | 7 | |a Traveling salesman problem |2 fast | |
650 | 4 | |a Traveling salesman problem | |
650 | 0 | 7 | |a Travelling-salesman-Problem |0 (DE-588)4185966-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Travelling-salesman-Problem |0 (DE-588)4185966-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Bixby, Robert E. |e Sonstige |4 oth | |
700 | 1 | |a Chvatal, Vasek |e Sonstige |4 oth | |
700 | 1 | |a Cook, William J. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Applegate, David L. |t Traveling Salesman Problem : A Computational Study |d Princeton : Princeton University Press, 2011 |z 9780691129938 |
912 | |a ZDB-4-ITC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030735973 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804179173148721152 |
---|---|
any_adam_object | |
author | Applegate, David L. |
author_facet | Applegate, David L. |
author_role | aut |
author_sort | Applegate, David L. |
author_variant | d l a dl dla |
building | Verbundindex |
bvnumber | BV045349320 |
classification_rvk | QH 462 SK 890 |
collection | ZDB-4-ITC |
contents | This book presents the latest findings on one of the most intensely investigated subjects in computational mathematics--the traveling salesman problem. It sounds simple enough: given a set of cities and the cost of travel between each pair of them, the problem challenges you to find the cheapest route by which to visit all the cities and return home to where you began. Though seemingly modest, this exercise has inspired studies by mathematicians, chemists, and physicists. Teachers use it in the classroom. It has practical applications in genetics, telecommunications, and neuroscience. The autho |
ctrlnum | (ZDB-4-ITC)ocn749265038 (OCoLC)749265038 (DE-599)BVBBV045349320 |
dewey-full | 511/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.5 |
dewey-search | 511/.5 |
dewey-sort | 3511 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02647nmm a2200553zc 4500</leader><controlfield tag="001">BV045349320</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181210s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400841103</subfield><subfield code="9">978-1-4008-4110-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400841100</subfield><subfield code="9">1-4008-4110-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691129932</subfield><subfield code="9">0-691-12993-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691129938</subfield><subfield code="9">978-0-691-12993-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283256118</subfield><subfield code="9">1-283-25611-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283256117</subfield><subfield code="9">978-1-283-25611-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-ITC)ocn749265038</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)749265038</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045349320</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 462</subfield><subfield code="0">(DE-625)141598:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Applegate, David L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Traveling Salesman Problem</subfield><subfield code="b">a Computational Study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (606 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Princeton series in applied mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">This book presents the latest findings on one of the most intensely investigated subjects in computational mathematics--the traveling salesman problem. It sounds simple enough: given a set of cities and the cost of travel between each pair of them, the problem challenges you to find the cheapest route by which to visit all the cities and return home to where you began. Though seemingly modest, this exercise has inspired studies by mathematicians, chemists, and physicists. Teachers use it in the classroom. It has practical applications in genetics, telecommunications, and neuroscience. The autho</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Graphic Methods</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Applied</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Traveling salesman problem</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traveling salesman problem</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Travelling-salesman-Problem</subfield><subfield code="0">(DE-588)4185966-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Travelling-salesman-Problem</subfield><subfield code="0">(DE-588)4185966-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bixby, Robert E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chvatal, Vasek</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cook, William J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Applegate, David L.</subfield><subfield code="t">Traveling Salesman Problem : A Computational Study</subfield><subfield code="d">Princeton : Princeton University Press, 2011</subfield><subfield code="z">9780691129938</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-ITC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030735973</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV045349320 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:15:39Z |
institution | BVB |
isbn | 9781400841103 1400841100 0691129932 9780691129938 1283256118 9781283256117 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030735973 |
oclc_num | 749265038 |
open_access_boolean | |
physical | 1 online resource (606 pages) |
psigel | ZDB-4-ITC |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Princeton University Press |
record_format | marc |
series2 | Princeton series in applied mathematics |
spelling | Applegate, David L. Verfasser aut The Traveling Salesman Problem a Computational Study Princeton Princeton University Press 2011 1 online resource (606 pages) txt rdacontent c rdamedia cr rdacarrier Princeton series in applied mathematics Print version record This book presents the latest findings on one of the most intensely investigated subjects in computational mathematics--the traveling salesman problem. It sounds simple enough: given a set of cities and the cost of travel between each pair of them, the problem challenges you to find the cheapest route by which to visit all the cities and return home to where you began. Though seemingly modest, this exercise has inspired studies by mathematicians, chemists, and physicists. Teachers use it in the classroom. It has practical applications in genetics, telecommunications, and neuroscience. The autho In English MATHEMATICS / Graphic Methods bisacsh MATHEMATICS / Applied bisacsh Traveling salesman problem fast Traveling salesman problem Travelling-salesman-Problem (DE-588)4185966-2 gnd rswk-swf Travelling-salesman-Problem (DE-588)4185966-2 s 1\p DE-604 Bixby, Robert E. Sonstige oth Chvatal, Vasek Sonstige oth Cook, William J. Sonstige oth Erscheint auch als Druck-Ausgabe Applegate, David L. Traveling Salesman Problem : A Computational Study Princeton : Princeton University Press, 2011 9780691129938 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Applegate, David L. The Traveling Salesman Problem a Computational Study This book presents the latest findings on one of the most intensely investigated subjects in computational mathematics--the traveling salesman problem. It sounds simple enough: given a set of cities and the cost of travel between each pair of them, the problem challenges you to find the cheapest route by which to visit all the cities and return home to where you began. Though seemingly modest, this exercise has inspired studies by mathematicians, chemists, and physicists. Teachers use it in the classroom. It has practical applications in genetics, telecommunications, and neuroscience. The autho MATHEMATICS / Graphic Methods bisacsh MATHEMATICS / Applied bisacsh Traveling salesman problem fast Traveling salesman problem Travelling-salesman-Problem (DE-588)4185966-2 gnd |
subject_GND | (DE-588)4185966-2 |
title | The Traveling Salesman Problem a Computational Study |
title_auth | The Traveling Salesman Problem a Computational Study |
title_exact_search | The Traveling Salesman Problem a Computational Study |
title_full | The Traveling Salesman Problem a Computational Study |
title_fullStr | The Traveling Salesman Problem a Computational Study |
title_full_unstemmed | The Traveling Salesman Problem a Computational Study |
title_short | The Traveling Salesman Problem |
title_sort | the traveling salesman problem a computational study |
title_sub | a Computational Study |
topic | MATHEMATICS / Graphic Methods bisacsh MATHEMATICS / Applied bisacsh Traveling salesman problem fast Traveling salesman problem Travelling-salesman-Problem (DE-588)4185966-2 gnd |
topic_facet | MATHEMATICS / Graphic Methods MATHEMATICS / Applied Traveling salesman problem Travelling-salesman-Problem |
work_keys_str_mv | AT applegatedavidl thetravelingsalesmanproblemacomputationalstudy AT bixbyroberte thetravelingsalesmanproblemacomputationalstudy AT chvatalvasek thetravelingsalesmanproblemacomputationalstudy AT cookwilliamj thetravelingsalesmanproblemacomputationalstudy |