Optimization in function spaces: with stability considerations in Orlicz spaces
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; New York
De Gruyter
2011
|
Schriftenreihe: | De Gruyter series in nonlinear analysis and applications
13 |
Schlagworte: | |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (xiv, 388 pages) illustrations |
ISBN: | 9783110250213 3110250217 1283166348 9781283166348 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045344524 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 181206s2011 |||| o||u| ||||||eng d | ||
020 | |a 9783110250213 |9 978-3-11-025021-3 | ||
020 | |a 3110250217 |9 3-11-025021-7 | ||
020 | |a 1283166348 |9 1-283-16634-8 | ||
020 | |a 9781283166348 |9 978-1-283-16634-8 | ||
035 | |a (ZDB-4-ENC)ocn754713662 | ||
035 | |a (OCoLC)754713662 | ||
035 | |a (DE-599)BVBBV045344524 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 515/.392 |2 22 | |
100 | 1 | |a Kosmol, Peter |e Verfasser |4 aut | |
245 | 1 | 0 | |a Optimization in function spaces |b with stability considerations in Orlicz spaces |c Peter Kosmol, Dieter Muller-Wichards |
264 | 1 | |a Berlin ; New York |b De Gruyter |c 2011 | |
300 | |a 1 online resource (xiv, 388 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter series in nonlinear analysis and applications |v 13 | |
500 | |a Print version record | ||
505 | 8 | |a This is an essentially self-contained book on the theory of convex functions and convex optimization in Banach spaces, with a special interest in Orlicz spaces. Approximate algorithms based on the stability principles and the solution of the corresponding nonlinear equations are developed in this text. A synopsis of the geometry of Banach spaces, aspects of stability and the duality of different levels of differentiability and convexity is developed. And it is provided a novel approach to the fundamental theorems of Variational Calculus based on the principle of pointwise minimization of the Lagrangian on the one hand and convexification by quadratic supplements using the classical Legendre-Ricatti equation on the other. The reader should be familiar with the concepts of mathematical analysis and linear algebra. Some awareness of the principles of measure theory will turn out to be helpful. The book is suitable for students of the second half of undergraduate studies, and it provides a rich set of material for a master course on linear and nonlinear functional analysis. Additionally it offers novel aspects at the advanced level | |
650 | 7 | |a MATHEMATICS / Differential Equations / General |2 bisacsh | |
650 | 7 | |a Mathematical optimization |2 fast | |
650 | 7 | |a Orlicz spaces |2 fast | |
650 | 7 | |a Stability / Mathematical models |2 fast | |
650 | 4 | |a Stability |x Mathematical models |a Mathematical optimization |a Orlicz spaces | |
650 | 0 | 7 | |a Orlicz-Raum |0 (DE-588)4172841-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Banach-Raum |0 (DE-588)4004402-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexe Optimierung |0 (DE-588)4137027-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Konvexe Optimierung |0 (DE-588)4137027-2 |D s |
689 | 0 | 1 | |a Banach-Raum |0 (DE-588)4004402-6 |D s |
689 | 0 | 2 | |a Orlicz-Raum |0 (DE-588)4172841-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Muller-Wichards, D. |d 1946- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Kosmol, Peter |t Optimization in function spaces |d Berlin ; New York : De Gruyter, 2011 |
912 | |a ZDB-4-ENC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030731228 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804179164345925632 |
---|---|
any_adam_object | |
author | Kosmol, Peter |
author_facet | Kosmol, Peter |
author_role | aut |
author_sort | Kosmol, Peter |
author_variant | p k pk |
building | Verbundindex |
bvnumber | BV045344524 |
collection | ZDB-4-ENC |
contents | This is an essentially self-contained book on the theory of convex functions and convex optimization in Banach spaces, with a special interest in Orlicz spaces. Approximate algorithms based on the stability principles and the solution of the corresponding nonlinear equations are developed in this text. A synopsis of the geometry of Banach spaces, aspects of stability and the duality of different levels of differentiability and convexity is developed. And it is provided a novel approach to the fundamental theorems of Variational Calculus based on the principle of pointwise minimization of the Lagrangian on the one hand and convexification by quadratic supplements using the classical Legendre-Ricatti equation on the other. The reader should be familiar with the concepts of mathematical analysis and linear algebra. Some awareness of the principles of measure theory will turn out to be helpful. The book is suitable for students of the second half of undergraduate studies, and it provides a rich set of material for a master course on linear and nonlinear functional analysis. Additionally it offers novel aspects at the advanced level |
ctrlnum | (ZDB-4-ENC)ocn754713662 (OCoLC)754713662 (DE-599)BVBBV045344524 |
dewey-full | 515/.392 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.392 |
dewey-search | 515/.392 |
dewey-sort | 3515 3392 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03257nmm a2200529zcb4500</leader><controlfield tag="001">BV045344524</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181206s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110250213</subfield><subfield code="9">978-3-11-025021-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110250217</subfield><subfield code="9">3-11-025021-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283166348</subfield><subfield code="9">1-283-16634-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283166348</subfield><subfield code="9">978-1-283-16634-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-ENC)ocn754713662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)754713662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045344524</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.392</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kosmol, Peter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization in function spaces</subfield><subfield code="b">with stability considerations in Orlicz spaces</subfield><subfield code="c">Peter Kosmol, Dieter Muller-Wichards</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; New York</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 388 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter series in nonlinear analysis and applications</subfield><subfield code="v">13</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">This is an essentially self-contained book on the theory of convex functions and convex optimization in Banach spaces, with a special interest in Orlicz spaces. Approximate algorithms based on the stability principles and the solution of the corresponding nonlinear equations are developed in this text. A synopsis of the geometry of Banach spaces, aspects of stability and the duality of different levels of differentiability and convexity is developed. And it is provided a novel approach to the fundamental theorems of Variational Calculus based on the principle of pointwise minimization of the Lagrangian on the one hand and convexification by quadratic supplements using the classical Legendre-Ricatti equation on the other. The reader should be familiar with the concepts of mathematical analysis and linear algebra. Some awareness of the principles of measure theory will turn out to be helpful. The book is suitable for students of the second half of undergraduate studies, and it provides a rich set of material for a master course on linear and nonlinear functional analysis. Additionally it offers novel aspects at the advanced level</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Differential Equations / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical optimization</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Orlicz spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stability / Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability</subfield><subfield code="x">Mathematical models</subfield><subfield code="a">Mathematical optimization</subfield><subfield code="a">Orlicz spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orlicz-Raum</subfield><subfield code="0">(DE-588)4172841-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Optimierung</subfield><subfield code="0">(DE-588)4137027-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konvexe Optimierung</subfield><subfield code="0">(DE-588)4137027-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Orlicz-Raum</subfield><subfield code="0">(DE-588)4172841-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muller-Wichards, D.</subfield><subfield code="d">1946-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Kosmol, Peter</subfield><subfield code="t">Optimization in function spaces</subfield><subfield code="d">Berlin ; New York : De Gruyter, 2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-ENC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030731228</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV045344524 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:15:31Z |
institution | BVB |
isbn | 9783110250213 3110250217 1283166348 9781283166348 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030731228 |
oclc_num | 754713662 |
open_access_boolean | |
physical | 1 online resource (xiv, 388 pages) illustrations |
psigel | ZDB-4-ENC |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter series in nonlinear analysis and applications |
spelling | Kosmol, Peter Verfasser aut Optimization in function spaces with stability considerations in Orlicz spaces Peter Kosmol, Dieter Muller-Wichards Berlin ; New York De Gruyter 2011 1 online resource (xiv, 388 pages) illustrations txt rdacontent c rdamedia cr rdacarrier De Gruyter series in nonlinear analysis and applications 13 Print version record This is an essentially self-contained book on the theory of convex functions and convex optimization in Banach spaces, with a special interest in Orlicz spaces. Approximate algorithms based on the stability principles and the solution of the corresponding nonlinear equations are developed in this text. A synopsis of the geometry of Banach spaces, aspects of stability and the duality of different levels of differentiability and convexity is developed. And it is provided a novel approach to the fundamental theorems of Variational Calculus based on the principle of pointwise minimization of the Lagrangian on the one hand and convexification by quadratic supplements using the classical Legendre-Ricatti equation on the other. The reader should be familiar with the concepts of mathematical analysis and linear algebra. Some awareness of the principles of measure theory will turn out to be helpful. The book is suitable for students of the second half of undergraduate studies, and it provides a rich set of material for a master course on linear and nonlinear functional analysis. Additionally it offers novel aspects at the advanced level MATHEMATICS / Differential Equations / General bisacsh Mathematical optimization fast Orlicz spaces fast Stability / Mathematical models fast Stability Mathematical models Mathematical optimization Orlicz spaces Orlicz-Raum (DE-588)4172841-5 gnd rswk-swf Banach-Raum (DE-588)4004402-6 gnd rswk-swf Konvexe Optimierung (DE-588)4137027-2 gnd rswk-swf Konvexe Optimierung (DE-588)4137027-2 s Banach-Raum (DE-588)4004402-6 s Orlicz-Raum (DE-588)4172841-5 s 1\p DE-604 Muller-Wichards, D. 1946- Sonstige oth Erscheint auch als Druck-Ausgabe Kosmol, Peter Optimization in function spaces Berlin ; New York : De Gruyter, 2011 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kosmol, Peter Optimization in function spaces with stability considerations in Orlicz spaces This is an essentially self-contained book on the theory of convex functions and convex optimization in Banach spaces, with a special interest in Orlicz spaces. Approximate algorithms based on the stability principles and the solution of the corresponding nonlinear equations are developed in this text. A synopsis of the geometry of Banach spaces, aspects of stability and the duality of different levels of differentiability and convexity is developed. And it is provided a novel approach to the fundamental theorems of Variational Calculus based on the principle of pointwise minimization of the Lagrangian on the one hand and convexification by quadratic supplements using the classical Legendre-Ricatti equation on the other. The reader should be familiar with the concepts of mathematical analysis and linear algebra. Some awareness of the principles of measure theory will turn out to be helpful. The book is suitable for students of the second half of undergraduate studies, and it provides a rich set of material for a master course on linear and nonlinear functional analysis. Additionally it offers novel aspects at the advanced level MATHEMATICS / Differential Equations / General bisacsh Mathematical optimization fast Orlicz spaces fast Stability / Mathematical models fast Stability Mathematical models Mathematical optimization Orlicz spaces Orlicz-Raum (DE-588)4172841-5 gnd Banach-Raum (DE-588)4004402-6 gnd Konvexe Optimierung (DE-588)4137027-2 gnd |
subject_GND | (DE-588)4172841-5 (DE-588)4004402-6 (DE-588)4137027-2 |
title | Optimization in function spaces with stability considerations in Orlicz spaces |
title_auth | Optimization in function spaces with stability considerations in Orlicz spaces |
title_exact_search | Optimization in function spaces with stability considerations in Orlicz spaces |
title_full | Optimization in function spaces with stability considerations in Orlicz spaces Peter Kosmol, Dieter Muller-Wichards |
title_fullStr | Optimization in function spaces with stability considerations in Orlicz spaces Peter Kosmol, Dieter Muller-Wichards |
title_full_unstemmed | Optimization in function spaces with stability considerations in Orlicz spaces Peter Kosmol, Dieter Muller-Wichards |
title_short | Optimization in function spaces |
title_sort | optimization in function spaces with stability considerations in orlicz spaces |
title_sub | with stability considerations in Orlicz spaces |
topic | MATHEMATICS / Differential Equations / General bisacsh Mathematical optimization fast Orlicz spaces fast Stability / Mathematical models fast Stability Mathematical models Mathematical optimization Orlicz spaces Orlicz-Raum (DE-588)4172841-5 gnd Banach-Raum (DE-588)4004402-6 gnd Konvexe Optimierung (DE-588)4137027-2 gnd |
topic_facet | MATHEMATICS / Differential Equations / General Mathematical optimization Orlicz spaces Stability / Mathematical models Stability Mathematical models Mathematical optimization Orlicz spaces Orlicz-Raum Banach-Raum Konvexe Optimierung |
work_keys_str_mv | AT kosmolpeter optimizationinfunctionspaceswithstabilityconsiderationsinorliczspaces AT mullerwichardsd optimizationinfunctionspaceswithstabilityconsiderationsinorliczspaces |