Solitary waves in fluid media:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
[Sharjah, U.A.E.]
Bentham Science Publishers
2010
|
Schlagworte: | |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (v, 255 pages) illustrations (some color) |
ISBN: | 9781608051403 1608051404 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045344190 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 181206s2010 |||| o||u| ||||||eng d | ||
020 | |a 9781608051403 |9 978-1-60805-140-3 | ||
020 | |a 1608051404 |9 1-60805-140-4 | ||
035 | |a (ZDB-4-ENC)ocn694144622 | ||
035 | |a (OCoLC)694144622 | ||
035 | |a (DE-599)BVBBV045344190 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 600 | |
245 | 1 | 0 | |a Solitary waves in fluid media |c edited by Claire David and Zhaosheng Feng |
264 | 1 | |a [Sharjah, U.A.E.] |b Bentham Science Publishers |c 2010 | |
300 | |a 1 online resource (v, 255 pages) |b illustrations (some color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Print version record | ||
505 | 8 | |a Since the first description by John Scott Russel in 1834, the solitary wave phenomenon has attracted considerable interests from scientists. The most interesting discovery since then has been the ability to integrate most of the nonlinear wave equations which govern solitary waves, from the Korteweg-de Vries equation to the nonlinear Schrodinger equation, in the 1960's. From that moment, a huge amount of theoretical works can be found on solitary waves. Due to the fact that many physical phenomena can be described by a soliton model, applications have followed each other, in telecommunications | |
650 | 7 | |a SCIENCE / Applied Sciences |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Inventions |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Reference |2 bisacsh | |
650 | 7 | |a Differential equations, Nonlinear |2 fast | |
650 | 7 | |a Fluid dynamics |2 fast | |
650 | 7 | |a Solitons |2 fast | |
650 | 4 | |a Solitons |a Differential equations, Nonlinear |a Fluid dynamics | |
700 | 1 | |a David, Claire |e Sonstige |4 oth | |
700 | 1 | |a Feng, Zhaosheng |e Sonstige |4 oth | |
912 | |a ZDB-4-ENC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030730894 |
Datensatz im Suchindex
_version_ | 1804179163681128448 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV045344190 |
collection | ZDB-4-ENC |
contents | Since the first description by John Scott Russel in 1834, the solitary wave phenomenon has attracted considerable interests from scientists. The most interesting discovery since then has been the ability to integrate most of the nonlinear wave equations which govern solitary waves, from the Korteweg-de Vries equation to the nonlinear Schrodinger equation, in the 1960's. From that moment, a huge amount of theoretical works can be found on solitary waves. Due to the fact that many physical phenomena can be described by a soliton model, applications have followed each other, in telecommunications |
ctrlnum | (ZDB-4-ENC)ocn694144622 (OCoLC)694144622 (DE-599)BVBBV045344190 |
dewey-full | 600 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 600 - Technology (Applied sciences) |
dewey-raw | 600 |
dewey-search | 600 |
dewey-sort | 3600 |
dewey-tens | 600 - Technology (Applied sciences) |
discipline | Technik allgemein |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01981nmm a2200409zc 4500</leader><controlfield tag="001">BV045344190</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181206s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781608051403</subfield><subfield code="9">978-1-60805-140-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1608051404</subfield><subfield code="9">1-60805-140-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-ENC)ocn694144622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)694144622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045344190</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">600</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solitary waves in fluid media</subfield><subfield code="c">edited by Claire David and Zhaosheng Feng</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Sharjah, U.A.E.]</subfield><subfield code="b">Bentham Science Publishers</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (v, 255 pages)</subfield><subfield code="b">illustrations (some color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Since the first description by John Scott Russel in 1834, the solitary wave phenomenon has attracted considerable interests from scientists. The most interesting discovery since then has been the ability to integrate most of the nonlinear wave equations which govern solitary waves, from the Korteweg-de Vries equation to the nonlinear Schrodinger equation, in the 1960's. From that moment, a huge amount of theoretical works can be found on solitary waves. Due to the fact that many physical phenomena can be described by a soliton model, applications have followed each other, in telecommunications</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Applied Sciences</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Inventions</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Reference</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Nonlinear</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fluid dynamics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Solitons</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solitons</subfield><subfield code="a">Differential equations, Nonlinear</subfield><subfield code="a">Fluid dynamics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">David, Claire</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Zhaosheng</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-ENC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030730894</subfield></datafield></record></collection> |
id | DE-604.BV045344190 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:15:30Z |
institution | BVB |
isbn | 9781608051403 1608051404 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030730894 |
oclc_num | 694144622 |
open_access_boolean | |
physical | 1 online resource (v, 255 pages) illustrations (some color) |
psigel | ZDB-4-ENC |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Bentham Science Publishers |
record_format | marc |
spelling | Solitary waves in fluid media edited by Claire David and Zhaosheng Feng [Sharjah, U.A.E.] Bentham Science Publishers 2010 1 online resource (v, 255 pages) illustrations (some color) txt rdacontent c rdamedia cr rdacarrier Print version record Since the first description by John Scott Russel in 1834, the solitary wave phenomenon has attracted considerable interests from scientists. The most interesting discovery since then has been the ability to integrate most of the nonlinear wave equations which govern solitary waves, from the Korteweg-de Vries equation to the nonlinear Schrodinger equation, in the 1960's. From that moment, a huge amount of theoretical works can be found on solitary waves. Due to the fact that many physical phenomena can be described by a soliton model, applications have followed each other, in telecommunications SCIENCE / Applied Sciences bisacsh TECHNOLOGY & ENGINEERING / Inventions bisacsh TECHNOLOGY & ENGINEERING / Reference bisacsh Differential equations, Nonlinear fast Fluid dynamics fast Solitons fast Solitons Differential equations, Nonlinear Fluid dynamics David, Claire Sonstige oth Feng, Zhaosheng Sonstige oth |
spellingShingle | Solitary waves in fluid media Since the first description by John Scott Russel in 1834, the solitary wave phenomenon has attracted considerable interests from scientists. The most interesting discovery since then has been the ability to integrate most of the nonlinear wave equations which govern solitary waves, from the Korteweg-de Vries equation to the nonlinear Schrodinger equation, in the 1960's. From that moment, a huge amount of theoretical works can be found on solitary waves. Due to the fact that many physical phenomena can be described by a soliton model, applications have followed each other, in telecommunications SCIENCE / Applied Sciences bisacsh TECHNOLOGY & ENGINEERING / Inventions bisacsh TECHNOLOGY & ENGINEERING / Reference bisacsh Differential equations, Nonlinear fast Fluid dynamics fast Solitons fast Solitons Differential equations, Nonlinear Fluid dynamics |
title | Solitary waves in fluid media |
title_auth | Solitary waves in fluid media |
title_exact_search | Solitary waves in fluid media |
title_full | Solitary waves in fluid media edited by Claire David and Zhaosheng Feng |
title_fullStr | Solitary waves in fluid media edited by Claire David and Zhaosheng Feng |
title_full_unstemmed | Solitary waves in fluid media edited by Claire David and Zhaosheng Feng |
title_short | Solitary waves in fluid media |
title_sort | solitary waves in fluid media |
topic | SCIENCE / Applied Sciences bisacsh TECHNOLOGY & ENGINEERING / Inventions bisacsh TECHNOLOGY & ENGINEERING / Reference bisacsh Differential equations, Nonlinear fast Fluid dynamics fast Solitons fast Solitons Differential equations, Nonlinear Fluid dynamics |
topic_facet | SCIENCE / Applied Sciences TECHNOLOGY & ENGINEERING / Inventions TECHNOLOGY & ENGINEERING / Reference Differential equations, Nonlinear Fluid dynamics Solitons Solitons Differential equations, Nonlinear Fluid dynamics |
work_keys_str_mv | AT davidclaire solitarywavesinfluidmedia AT fengzhaosheng solitarywavesinfluidmedia |