Symplectic elasticity:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey
World Scientific
2009
|
Schlagworte: | |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (xxi, 292 pages) illustrations |
ISBN: | 9789812778727 9812778721 1282441361 9781282441361 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045343728 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 181206s2009 |||| o||u| ||||||eng d | ||
020 | |a 9789812778727 |9 978-981-277-872-7 | ||
020 | |a 9812778721 |9 981-277-872-1 | ||
020 | |a 1282441361 |9 1-282-44136-1 | ||
020 | |a 9781282441361 |9 978-1-282-44136-1 | ||
035 | |a (ZDB-4-ENC)ocn610176684 | ||
035 | |a (OCoLC)610176684 | ||
035 | |a (DE-599)BVBBV045343728 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 531/.382 |2 22 | |
084 | |a UF 3000 |0 (DE-625)145570: |2 rvk | ||
100 | 1 | |a Yao, Weian |d 1963- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Symplectic elasticity |c Weian Yao, Wanxie Zhong, Chee Wah Lim |
264 | 1 | |a New Jersey |b World Scientific |c 2009 | |
300 | |a 1 online resource (xxi, 292 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Print version record | ||
505 | 8 | |a Exact analytical solutions in some areas of solid mechanics, in particular problems in the theory of plates, have long been regarded as bottlenecks in the development of elasticity. In contrast to the traditional solution methodologies, such as Timoshenko's approach in the theory of elasticity for which the main technique is the semi-inverse method, this book presents a new approach based on the Hamiltonian principle and the symplectic duality system where solutions are derived in a rational manner in the symplectic space. Dissimilar to the conventional Euclidean space with one kind of variables, the symplectic space with dual variables thus provides a fundamental breakthrough. A unique feature of this symplectic approach is the classical bending problems in solid mechanics now become eigenvalue problems and the symplectic bending deflection solutions are constituted by expansion of eigenvectors. The classical solutions are subsets of the more general symplectic solutions. This book explains the new solution methodology by discussing plane isotropic elasticity, multiple layered plate, anisotropic elasticity, sectorial plate and thin plate bending problems in detail. A number of existing problems without analytical solutions within the framework of classical approaches are solved analytically using this symplectic approach. Symplectic methodologies can be applied not only to problems in elasticity, but also to other solid mechanics problems. In addition, it can also be extended to various engineering mechanics and mathematical physics fields, such as vibration, wave propagation, control theory, electromagnetism and quantum mechanics | |
546 | |a Translated from Chinese | ||
650 | 7 | |a SCIENCE / Mechanics / General |2 bisacsh | |
650 | 7 | |a SCIENCE / Mechanics / Solids |2 bisacsh | |
650 | 7 | |a Elasticity |2 fast | |
650 | 7 | |a Symplectic spaces |2 fast | |
650 | 4 | |a Elasticity |a Symplectic spaces | |
650 | 0 | 7 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elastizitätstheorie |0 (DE-588)4123124-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elastizitätstheorie |0 (DE-588)4123124-7 |D s |
689 | 0 | 1 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Zhong, Wanxie |e Sonstige |4 oth | |
700 | 1 | |a Lim, Chee Wah |d 1965- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Yao, Weian, 1963- |t Symplectic elasticity |d New Jersey : World Scientific, 2009 |z 9789812778703 |
912 | |a ZDB-4-ENC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030730432 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804179162723778560 |
---|---|
any_adam_object | |
author | Yao, Weian 1963- |
author_facet | Yao, Weian 1963- |
author_role | aut |
author_sort | Yao, Weian 1963- |
author_variant | w y wy |
building | Verbundindex |
bvnumber | BV045343728 |
classification_rvk | UF 3000 |
collection | ZDB-4-ENC |
contents | Exact analytical solutions in some areas of solid mechanics, in particular problems in the theory of plates, have long been regarded as bottlenecks in the development of elasticity. In contrast to the traditional solution methodologies, such as Timoshenko's approach in the theory of elasticity for which the main technique is the semi-inverse method, this book presents a new approach based on the Hamiltonian principle and the symplectic duality system where solutions are derived in a rational manner in the symplectic space. Dissimilar to the conventional Euclidean space with one kind of variables, the symplectic space with dual variables thus provides a fundamental breakthrough. A unique feature of this symplectic approach is the classical bending problems in solid mechanics now become eigenvalue problems and the symplectic bending deflection solutions are constituted by expansion of eigenvectors. The classical solutions are subsets of the more general symplectic solutions. This book explains the new solution methodology by discussing plane isotropic elasticity, multiple layered plate, anisotropic elasticity, sectorial plate and thin plate bending problems in detail. A number of existing problems without analytical solutions within the framework of classical approaches are solved analytically using this symplectic approach. Symplectic methodologies can be applied not only to problems in elasticity, but also to other solid mechanics problems. In addition, it can also be extended to various engineering mechanics and mathematical physics fields, such as vibration, wave propagation, control theory, electromagnetism and quantum mechanics |
ctrlnum | (ZDB-4-ENC)ocn610176684 (OCoLC)610176684 (DE-599)BVBBV045343728 |
dewey-full | 531/.382 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531/.382 |
dewey-search | 531/.382 |
dewey-sort | 3531 3382 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03616nmm a2200529zc 4500</leader><controlfield tag="001">BV045343728</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181206s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812778727</subfield><subfield code="9">978-981-277-872-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812778721</subfield><subfield code="9">981-277-872-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1282441361</subfield><subfield code="9">1-282-44136-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282441361</subfield><subfield code="9">978-1-282-44136-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-ENC)ocn610176684</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)610176684</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045343728</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531/.382</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 3000</subfield><subfield code="0">(DE-625)145570:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yao, Weian</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symplectic elasticity</subfield><subfield code="c">Weian Yao, Wanxie Zhong, Chee Wah Lim</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxi, 292 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Exact analytical solutions in some areas of solid mechanics, in particular problems in the theory of plates, have long been regarded as bottlenecks in the development of elasticity. In contrast to the traditional solution methodologies, such as Timoshenko's approach in the theory of elasticity for which the main technique is the semi-inverse method, this book presents a new approach based on the Hamiltonian principle and the symplectic duality system where solutions are derived in a rational manner in the symplectic space. Dissimilar to the conventional Euclidean space with one kind of variables, the symplectic space with dual variables thus provides a fundamental breakthrough. A unique feature of this symplectic approach is the classical bending problems in solid mechanics now become eigenvalue problems and the symplectic bending deflection solutions are constituted by expansion of eigenvectors. The classical solutions are subsets of the more general symplectic solutions. This book explains the new solution methodology by discussing plane isotropic elasticity, multiple layered plate, anisotropic elasticity, sectorial plate and thin plate bending problems in detail. A number of existing problems without analytical solutions within the framework of classical approaches are solved analytically using this symplectic approach. Symplectic methodologies can be applied not only to problems in elasticity, but also to other solid mechanics problems. In addition, it can also be extended to various engineering mechanics and mathematical physics fields, such as vibration, wave propagation, control theory, electromagnetism and quantum mechanics</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">Translated from Chinese</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Mechanics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Mechanics / Solids</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elasticity</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Symplectic spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elasticity</subfield><subfield code="a">Symplectic spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elastizitätstheorie</subfield><subfield code="0">(DE-588)4123124-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elastizitätstheorie</subfield><subfield code="0">(DE-588)4123124-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhong, Wanxie</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lim, Chee Wah</subfield><subfield code="d">1965-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Yao, Weian, 1963-</subfield><subfield code="t">Symplectic elasticity</subfield><subfield code="d">New Jersey : World Scientific, 2009</subfield><subfield code="z">9789812778703</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-ENC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030730432</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV045343728 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:15:29Z |
institution | BVB |
isbn | 9789812778727 9812778721 1282441361 9781282441361 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030730432 |
oclc_num | 610176684 |
open_access_boolean | |
physical | 1 online resource (xxi, 292 pages) illustrations |
psigel | ZDB-4-ENC |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | World Scientific |
record_format | marc |
spelling | Yao, Weian 1963- Verfasser aut Symplectic elasticity Weian Yao, Wanxie Zhong, Chee Wah Lim New Jersey World Scientific 2009 1 online resource (xxi, 292 pages) illustrations txt rdacontent c rdamedia cr rdacarrier Print version record Exact analytical solutions in some areas of solid mechanics, in particular problems in the theory of plates, have long been regarded as bottlenecks in the development of elasticity. In contrast to the traditional solution methodologies, such as Timoshenko's approach in the theory of elasticity for which the main technique is the semi-inverse method, this book presents a new approach based on the Hamiltonian principle and the symplectic duality system where solutions are derived in a rational manner in the symplectic space. Dissimilar to the conventional Euclidean space with one kind of variables, the symplectic space with dual variables thus provides a fundamental breakthrough. A unique feature of this symplectic approach is the classical bending problems in solid mechanics now become eigenvalue problems and the symplectic bending deflection solutions are constituted by expansion of eigenvectors. The classical solutions are subsets of the more general symplectic solutions. This book explains the new solution methodology by discussing plane isotropic elasticity, multiple layered plate, anisotropic elasticity, sectorial plate and thin plate bending problems in detail. A number of existing problems without analytical solutions within the framework of classical approaches are solved analytically using this symplectic approach. Symplectic methodologies can be applied not only to problems in elasticity, but also to other solid mechanics problems. In addition, it can also be extended to various engineering mechanics and mathematical physics fields, such as vibration, wave propagation, control theory, electromagnetism and quantum mechanics Translated from Chinese SCIENCE / Mechanics / General bisacsh SCIENCE / Mechanics / Solids bisacsh Elasticity fast Symplectic spaces fast Elasticity Symplectic spaces Symplektische Geometrie (DE-588)4194232-2 gnd rswk-swf Elastizitätstheorie (DE-588)4123124-7 gnd rswk-swf Elastizitätstheorie (DE-588)4123124-7 s Symplektische Geometrie (DE-588)4194232-2 s 1\p DE-604 Zhong, Wanxie Sonstige oth Lim, Chee Wah 1965- Sonstige oth Erscheint auch als Druck-Ausgabe Yao, Weian, 1963- Symplectic elasticity New Jersey : World Scientific, 2009 9789812778703 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Yao, Weian 1963- Symplectic elasticity Exact analytical solutions in some areas of solid mechanics, in particular problems in the theory of plates, have long been regarded as bottlenecks in the development of elasticity. In contrast to the traditional solution methodologies, such as Timoshenko's approach in the theory of elasticity for which the main technique is the semi-inverse method, this book presents a new approach based on the Hamiltonian principle and the symplectic duality system where solutions are derived in a rational manner in the symplectic space. Dissimilar to the conventional Euclidean space with one kind of variables, the symplectic space with dual variables thus provides a fundamental breakthrough. A unique feature of this symplectic approach is the classical bending problems in solid mechanics now become eigenvalue problems and the symplectic bending deflection solutions are constituted by expansion of eigenvectors. The classical solutions are subsets of the more general symplectic solutions. This book explains the new solution methodology by discussing plane isotropic elasticity, multiple layered plate, anisotropic elasticity, sectorial plate and thin plate bending problems in detail. A number of existing problems without analytical solutions within the framework of classical approaches are solved analytically using this symplectic approach. Symplectic methodologies can be applied not only to problems in elasticity, but also to other solid mechanics problems. In addition, it can also be extended to various engineering mechanics and mathematical physics fields, such as vibration, wave propagation, control theory, electromagnetism and quantum mechanics SCIENCE / Mechanics / General bisacsh SCIENCE / Mechanics / Solids bisacsh Elasticity fast Symplectic spaces fast Elasticity Symplectic spaces Symplektische Geometrie (DE-588)4194232-2 gnd Elastizitätstheorie (DE-588)4123124-7 gnd |
subject_GND | (DE-588)4194232-2 (DE-588)4123124-7 |
title | Symplectic elasticity |
title_auth | Symplectic elasticity |
title_exact_search | Symplectic elasticity |
title_full | Symplectic elasticity Weian Yao, Wanxie Zhong, Chee Wah Lim |
title_fullStr | Symplectic elasticity Weian Yao, Wanxie Zhong, Chee Wah Lim |
title_full_unstemmed | Symplectic elasticity Weian Yao, Wanxie Zhong, Chee Wah Lim |
title_short | Symplectic elasticity |
title_sort | symplectic elasticity |
topic | SCIENCE / Mechanics / General bisacsh SCIENCE / Mechanics / Solids bisacsh Elasticity fast Symplectic spaces fast Elasticity Symplectic spaces Symplektische Geometrie (DE-588)4194232-2 gnd Elastizitätstheorie (DE-588)4123124-7 gnd |
topic_facet | SCIENCE / Mechanics / General SCIENCE / Mechanics / Solids Elasticity Symplectic spaces Elasticity Symplectic spaces Symplektische Geometrie Elastizitätstheorie |
work_keys_str_mv | AT yaoweian symplecticelasticity AT zhongwanxie symplecticelasticity AT limcheewah symplecticelasticity |