Path integrals in quantum mechanics, statistics, polymer physics, and financial markets:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey
World Scientific
2009
|
Ausgabe: | 5th ed |
Schlagworte: | |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (xliii, 1579 pages) illustrations |
ISBN: | 9789814273572 9814273570 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045343585 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 181206s2009 |||| o||u| ||||||eng d | ||
020 | |a 9789814273572 |9 978-981-4273-57-2 | ||
020 | |a 9814273570 |9 981-4273-57-0 | ||
035 | |a (ZDB-4-ENC)ocn588972336 | ||
035 | |a (OCoLC)588972336 | ||
035 | |a (DE-599)BVBBV045343585 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 530.12 |2 22 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UK 4500 |0 (DE-625)145802: |2 rvk | ||
100 | 1 | |a Kleinert, Hagen |e Verfasser |4 aut | |
245 | 1 | 0 | |a Path integrals in quantum mechanics, statistics, polymer physics, and financial markets |c Hagen Kleinert |
250 | |a 5th ed | ||
264 | 1 | |a New Jersey |b World Scientific |c 2009 | |
300 | |a 1 online resource (xliii, 1579 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Print version record | ||
505 | 8 | |a "This is the fifth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r[superscript 2] potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations." "In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions." "The powerful Feynman-Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals." "Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory now also applies to small orders." "Special attention is devoted to path integrals with -- | |
505 | 8 | |a Topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect." "The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact that large market fluctuations occur much more frequently than in Gaussian distributions." --Book Jacket | |
650 | 7 | |a SCIENCE / Physics / Quantum Theory |2 bisacsh | |
650 | 7 | |a Path integrals |2 fast | |
650 | 7 | |a Polymers |2 fast | |
650 | 7 | |a Quantum theory |2 fast | |
650 | 7 | |a Statistical physics |2 fast | |
650 | 4 | |a Path integrals |a Quantum theory |a Statistical physics |a Polymers | |
650 | 0 | 7 | |a Black-Scholes-Modell |0 (DE-588)4206283-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Physik |0 (DE-588)4045956-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pfadintegral |0 (DE-588)4173973-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polymere |0 (DE-588)4046699-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kapitalmarkt |0 (DE-588)4029578-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Martingaltheorie |0 (DE-588)4168982-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistische Physik |0 (DE-588)4057000-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kreditmarkt |0 (DE-588)4073788-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optionspreistheorie |0 (DE-588)4135346-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | 1 | |a Pfadintegral |0 (DE-588)4173973-5 |D s |
689 | 0 | 2 | |a Kapitalmarkt |0 (DE-588)4029578-3 |D s |
689 | 0 | 3 | |a Kreditmarkt |0 (DE-588)4073788-3 |D s |
689 | 0 | 4 | |a Optionspreistheorie |0 (DE-588)4135346-8 |D s |
689 | 0 | 5 | |a Martingaltheorie |0 (DE-588)4168982-3 |D s |
689 | 0 | 6 | |a Black-Scholes-Modell |0 (DE-588)4206283-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Pfadintegral |0 (DE-588)4173973-5 |D s |
689 | 1 | 1 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 1 | 2 | |a Statistische Physik |0 (DE-588)4057000-9 |D s |
689 | 1 | 3 | |a Polymere |0 (DE-588)4046699-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Polymere |0 (DE-588)4046699-1 |D s |
689 | 2 | 1 | |a Physik |0 (DE-588)4045956-1 |D s |
689 | 2 | 2 | |a Pfadintegral |0 (DE-588)4173973-5 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Pfadintegral |0 (DE-588)4173973-5 |D s |
689 | 3 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Kleinert, Hagen |t Path integrals in quantum mechanics, statistics, polymer physics, and financial markets |b 5th ed |d New Jersey : World Scientific, 2009 |z 9789814273558 |
912 | |a ZDB-4-ENC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030730289 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804179162429128704 |
---|---|
any_adam_object | |
author | Kleinert, Hagen |
author_facet | Kleinert, Hagen |
author_role | aut |
author_sort | Kleinert, Hagen |
author_variant | h k hk |
building | Verbundindex |
bvnumber | BV045343585 |
classification_rvk | SK 950 UK 4500 |
collection | ZDB-4-ENC |
contents | "This is the fifth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r[superscript 2] potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations." "In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions." "The powerful Feynman-Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals." "Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory now also applies to small orders." "Special attention is devoted to path integrals with -- Topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect." "The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact that large market fluctuations occur much more frequently than in Gaussian distributions." --Book Jacket |
ctrlnum | (ZDB-4-ENC)ocn588972336 (OCoLC)588972336 (DE-599)BVBBV045343585 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
edition | 5th ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06228nmm a2200865zc 4500</leader><controlfield tag="001">BV045343585</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181206s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814273572</subfield><subfield code="9">978-981-4273-57-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814273570</subfield><subfield code="9">981-4273-57-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-ENC)ocn588972336</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)588972336</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045343585</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 4500</subfield><subfield code="0">(DE-625)145802:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kleinert, Hagen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Path integrals in quantum mechanics, statistics, polymer physics, and financial markets</subfield><subfield code="c">Hagen Kleinert</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">5th ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xliii, 1579 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">"This is the fifth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r[superscript 2] potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations." "In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions." "The powerful Feynman-Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals." "Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory now also applies to small orders." "Special attention is devoted to path integrals with --</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect." "The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact that large market fluctuations occur much more frequently than in Gaussian distributions." --Book Jacket</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / Quantum Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Path integrals</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polymers</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Path integrals</subfield><subfield code="a">Quantum theory</subfield><subfield code="a">Statistical physics</subfield><subfield code="a">Polymers</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Black-Scholes-Modell</subfield><subfield code="0">(DE-588)4206283-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polymere</subfield><subfield code="0">(DE-588)4046699-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kapitalmarkt</subfield><subfield code="0">(DE-588)4029578-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Martingaltheorie</subfield><subfield code="0">(DE-588)4168982-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kreditmarkt</subfield><subfield code="0">(DE-588)4073788-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optionspreistheorie</subfield><subfield code="0">(DE-588)4135346-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kapitalmarkt</subfield><subfield code="0">(DE-588)4029578-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Kreditmarkt</subfield><subfield code="0">(DE-588)4073788-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Optionspreistheorie</subfield><subfield code="0">(DE-588)4135346-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Martingaltheorie</subfield><subfield code="0">(DE-588)4168982-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Black-Scholes-Modell</subfield><subfield code="0">(DE-588)4206283-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Polymere</subfield><subfield code="0">(DE-588)4046699-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Polymere</subfield><subfield code="0">(DE-588)4046699-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Kleinert, Hagen</subfield><subfield code="t">Path integrals in quantum mechanics, statistics, polymer physics, and financial markets</subfield><subfield code="b">5th ed</subfield><subfield code="d">New Jersey : World Scientific, 2009</subfield><subfield code="z">9789814273558</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-ENC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030730289</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV045343585 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:15:29Z |
institution | BVB |
isbn | 9789814273572 9814273570 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030730289 |
oclc_num | 588972336 |
open_access_boolean | |
physical | 1 online resource (xliii, 1579 pages) illustrations |
psigel | ZDB-4-ENC |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | World Scientific |
record_format | marc |
spelling | Kleinert, Hagen Verfasser aut Path integrals in quantum mechanics, statistics, polymer physics, and financial markets Hagen Kleinert 5th ed New Jersey World Scientific 2009 1 online resource (xliii, 1579 pages) illustrations txt rdacontent c rdamedia cr rdacarrier Print version record "This is the fifth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r[superscript 2] potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations." "In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions." "The powerful Feynman-Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals." "Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory now also applies to small orders." "Special attention is devoted to path integrals with -- Topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect." "The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact that large market fluctuations occur much more frequently than in Gaussian distributions." --Book Jacket SCIENCE / Physics / Quantum Theory bisacsh Path integrals fast Polymers fast Quantum theory fast Statistical physics fast Path integrals Quantum theory Statistical physics Polymers Black-Scholes-Modell (DE-588)4206283-4 gnd rswk-swf Physik (DE-588)4045956-1 gnd rswk-swf Pfadintegral (DE-588)4173973-5 gnd rswk-swf Polymere (DE-588)4046699-1 gnd rswk-swf Kapitalmarkt (DE-588)4029578-3 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Martingaltheorie (DE-588)4168982-3 gnd rswk-swf Statistische Physik (DE-588)4057000-9 gnd rswk-swf Kreditmarkt (DE-588)4073788-3 gnd rswk-swf Optionspreistheorie (DE-588)4135346-8 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 s Pfadintegral (DE-588)4173973-5 s Kapitalmarkt (DE-588)4029578-3 s Kreditmarkt (DE-588)4073788-3 s Optionspreistheorie (DE-588)4135346-8 s Martingaltheorie (DE-588)4168982-3 s Black-Scholes-Modell (DE-588)4206283-4 s 1\p DE-604 Statistische Physik (DE-588)4057000-9 s Polymere (DE-588)4046699-1 s 2\p DE-604 Physik (DE-588)4045956-1 s 3\p DE-604 Mathematische Physik (DE-588)4037952-8 s 4\p DE-604 Erscheint auch als Druck-Ausgabe Kleinert, Hagen Path integrals in quantum mechanics, statistics, polymer physics, and financial markets 5th ed New Jersey : World Scientific, 2009 9789814273558 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kleinert, Hagen Path integrals in quantum mechanics, statistics, polymer physics, and financial markets "This is the fifth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r[superscript 2] potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations." "In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions." "The powerful Feynman-Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals." "Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory now also applies to small orders." "Special attention is devoted to path integrals with -- Topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect." "The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact that large market fluctuations occur much more frequently than in Gaussian distributions." --Book Jacket SCIENCE / Physics / Quantum Theory bisacsh Path integrals fast Polymers fast Quantum theory fast Statistical physics fast Path integrals Quantum theory Statistical physics Polymers Black-Scholes-Modell (DE-588)4206283-4 gnd Physik (DE-588)4045956-1 gnd Pfadintegral (DE-588)4173973-5 gnd Polymere (DE-588)4046699-1 gnd Kapitalmarkt (DE-588)4029578-3 gnd Mathematische Physik (DE-588)4037952-8 gnd Quantenmechanik (DE-588)4047989-4 gnd Martingaltheorie (DE-588)4168982-3 gnd Statistische Physik (DE-588)4057000-9 gnd Kreditmarkt (DE-588)4073788-3 gnd Optionspreistheorie (DE-588)4135346-8 gnd |
subject_GND | (DE-588)4206283-4 (DE-588)4045956-1 (DE-588)4173973-5 (DE-588)4046699-1 (DE-588)4029578-3 (DE-588)4037952-8 (DE-588)4047989-4 (DE-588)4168982-3 (DE-588)4057000-9 (DE-588)4073788-3 (DE-588)4135346-8 |
title | Path integrals in quantum mechanics, statistics, polymer physics, and financial markets |
title_auth | Path integrals in quantum mechanics, statistics, polymer physics, and financial markets |
title_exact_search | Path integrals in quantum mechanics, statistics, polymer physics, and financial markets |
title_full | Path integrals in quantum mechanics, statistics, polymer physics, and financial markets Hagen Kleinert |
title_fullStr | Path integrals in quantum mechanics, statistics, polymer physics, and financial markets Hagen Kleinert |
title_full_unstemmed | Path integrals in quantum mechanics, statistics, polymer physics, and financial markets Hagen Kleinert |
title_short | Path integrals in quantum mechanics, statistics, polymer physics, and financial markets |
title_sort | path integrals in quantum mechanics statistics polymer physics and financial markets |
topic | SCIENCE / Physics / Quantum Theory bisacsh Path integrals fast Polymers fast Quantum theory fast Statistical physics fast Path integrals Quantum theory Statistical physics Polymers Black-Scholes-Modell (DE-588)4206283-4 gnd Physik (DE-588)4045956-1 gnd Pfadintegral (DE-588)4173973-5 gnd Polymere (DE-588)4046699-1 gnd Kapitalmarkt (DE-588)4029578-3 gnd Mathematische Physik (DE-588)4037952-8 gnd Quantenmechanik (DE-588)4047989-4 gnd Martingaltheorie (DE-588)4168982-3 gnd Statistische Physik (DE-588)4057000-9 gnd Kreditmarkt (DE-588)4073788-3 gnd Optionspreistheorie (DE-588)4135346-8 gnd |
topic_facet | SCIENCE / Physics / Quantum Theory Path integrals Polymers Quantum theory Statistical physics Path integrals Quantum theory Statistical physics Polymers Black-Scholes-Modell Physik Pfadintegral Polymere Kapitalmarkt Mathematische Physik Quantenmechanik Martingaltheorie Statistische Physik Kreditmarkt Optionspreistheorie |
work_keys_str_mv | AT kleinerthagen pathintegralsinquantummechanicsstatisticspolymerphysicsandfinancialmarkets |