An introduction to the mathematical theory of vibrations of elastic plates:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hackensack, N.J.
World Scientific
2006
|
Schlagworte: | |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (xix, 190 pages) illustrations |
ISBN: | 9789812772497 9812772499 1281373230 9781281373236 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045343474 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 181206s2006 |||| o||u| ||||||eng d | ||
020 | |a 9789812772497 |9 978-981-277-249-7 | ||
020 | |a 9812772499 |9 981-277-249-9 | ||
020 | |a 1281373230 |9 1-281-37323-0 | ||
020 | |a 9781281373236 |9 978-1-281-37323-6 | ||
035 | |a (ZDB-4-ENC)ocn560389322 | ||
035 | |a (OCoLC)560389322 | ||
035 | |a (DE-599)BVBBV045343474 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 624.1/776 |2 22 | |
100 | 1 | |a Mindlin, Raymond D. |d 1906-1987 |e Verfasser |4 aut | |
245 | 1 | 0 | |a An introduction to the mathematical theory of vibrations of elastic plates |c R.D. Mindlin ; edited by Jiashi Yang |
264 | 1 | |a Hackensack, N.J. |b World Scientific |c 2006 | |
300 | |a 1 online resource (xix, 190 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Print version record | ||
505 | 8 | |a This book by the late R D Mindlin is destined to become a classic introduction to the mathematical aspects of two-dimensional theories of elastic plates. It systematically derives the two-dimensional theories of anisotropic elastic plates from the variational formulation of the three-dimensional theory of elasticity by power series expansions. The uniqueness of two-dimensional problems is also examined from the variational viewpoint. The accuracy of the two-dimensional equations is judged by comparing the dispersion relations of the waves that the two-dimensional theories can describe with prediction from the three-dimensional theory. Discussing mainly high-frequency dynamic problems, it is also useful in traditional applications in structural engineering as well as provides the theoretical foundation for acoustic wave devices | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Structural |2 bisacsh | |
650 | 7 | |a Elastic plates and shells |2 fast | |
650 | 7 | |a Nonlinear theories |2 fast | |
650 | 7 | |a Vibration / Mathematical models |2 fast | |
650 | 4 | |a Elastic plates and shells |a Vibration |x Mathematical models |a Nonlinear theories | |
700 | 1 | |a Yang, Jiashi |d 1956- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Mindlin, Raymond D. (Raymond David), 1906-1987 |t Introduction to the mathematical theory of vibrations of elastic plates |d Hackensack, N.J. : World Scientific, 2006 |
912 | |a ZDB-4-ENC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030730177 |
Datensatz im Suchindex
_version_ | 1804179162310639616 |
---|---|
any_adam_object | |
author | Mindlin, Raymond D. 1906-1987 |
author_facet | Mindlin, Raymond D. 1906-1987 |
author_role | aut |
author_sort | Mindlin, Raymond D. 1906-1987 |
author_variant | r d m rd rdm |
building | Verbundindex |
bvnumber | BV045343474 |
collection | ZDB-4-ENC |
contents | This book by the late R D Mindlin is destined to become a classic introduction to the mathematical aspects of two-dimensional theories of elastic plates. It systematically derives the two-dimensional theories of anisotropic elastic plates from the variational formulation of the three-dimensional theory of elasticity by power series expansions. The uniqueness of two-dimensional problems is also examined from the variational viewpoint. The accuracy of the two-dimensional equations is judged by comparing the dispersion relations of the waves that the two-dimensional theories can describe with prediction from the three-dimensional theory. Discussing mainly high-frequency dynamic problems, it is also useful in traditional applications in structural engineering as well as provides the theoretical foundation for acoustic wave devices |
ctrlnum | (ZDB-4-ENC)ocn560389322 (OCoLC)560389322 (DE-599)BVBBV045343474 |
dewey-full | 624.1/776 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 624 - Civil engineering |
dewey-raw | 624.1/776 |
dewey-search | 624.1/776 |
dewey-sort | 3624.1 3776 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Bauingenieurwesen |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02501nmm a2200421zc 4500</leader><controlfield tag="001">BV045343474</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181206s2006 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812772497</subfield><subfield code="9">978-981-277-249-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812772499</subfield><subfield code="9">981-277-249-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281373230</subfield><subfield code="9">1-281-37323-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281373236</subfield><subfield code="9">978-1-281-37323-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-ENC)ocn560389322</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)560389322</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045343474</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">624.1/776</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mindlin, Raymond D.</subfield><subfield code="d">1906-1987</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to the mathematical theory of vibrations of elastic plates</subfield><subfield code="c">R.D. Mindlin ; edited by Jiashi Yang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hackensack, N.J.</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xix, 190 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">This book by the late R D Mindlin is destined to become a classic introduction to the mathematical aspects of two-dimensional theories of elastic plates. It systematically derives the two-dimensional theories of anisotropic elastic plates from the variational formulation of the three-dimensional theory of elasticity by power series expansions. The uniqueness of two-dimensional problems is also examined from the variational viewpoint. The accuracy of the two-dimensional equations is judged by comparing the dispersion relations of the waves that the two-dimensional theories can describe with prediction from the three-dimensional theory. Discussing mainly high-frequency dynamic problems, it is also useful in traditional applications in structural engineering as well as provides the theoretical foundation for acoustic wave devices</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Structural</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elastic plates and shells</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear theories</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vibration / Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elastic plates and shells</subfield><subfield code="a">Vibration</subfield><subfield code="x">Mathematical models</subfield><subfield code="a">Nonlinear theories</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jiashi</subfield><subfield code="d">1956-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Mindlin, Raymond D. (Raymond David), 1906-1987</subfield><subfield code="t">Introduction to the mathematical theory of vibrations of elastic plates</subfield><subfield code="d">Hackensack, N.J. : World Scientific, 2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-ENC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030730177</subfield></datafield></record></collection> |
id | DE-604.BV045343474 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:15:29Z |
institution | BVB |
isbn | 9789812772497 9812772499 1281373230 9781281373236 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030730177 |
oclc_num | 560389322 |
open_access_boolean | |
physical | 1 online resource (xix, 190 pages) illustrations |
psigel | ZDB-4-ENC |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | World Scientific |
record_format | marc |
spelling | Mindlin, Raymond D. 1906-1987 Verfasser aut An introduction to the mathematical theory of vibrations of elastic plates R.D. Mindlin ; edited by Jiashi Yang Hackensack, N.J. World Scientific 2006 1 online resource (xix, 190 pages) illustrations txt rdacontent c rdamedia cr rdacarrier Print version record This book by the late R D Mindlin is destined to become a classic introduction to the mathematical aspects of two-dimensional theories of elastic plates. It systematically derives the two-dimensional theories of anisotropic elastic plates from the variational formulation of the three-dimensional theory of elasticity by power series expansions. The uniqueness of two-dimensional problems is also examined from the variational viewpoint. The accuracy of the two-dimensional equations is judged by comparing the dispersion relations of the waves that the two-dimensional theories can describe with prediction from the three-dimensional theory. Discussing mainly high-frequency dynamic problems, it is also useful in traditional applications in structural engineering as well as provides the theoretical foundation for acoustic wave devices TECHNOLOGY & ENGINEERING / Structural bisacsh Elastic plates and shells fast Nonlinear theories fast Vibration / Mathematical models fast Elastic plates and shells Vibration Mathematical models Nonlinear theories Yang, Jiashi 1956- Sonstige oth Erscheint auch als Druck-Ausgabe Mindlin, Raymond D. (Raymond David), 1906-1987 Introduction to the mathematical theory of vibrations of elastic plates Hackensack, N.J. : World Scientific, 2006 |
spellingShingle | Mindlin, Raymond D. 1906-1987 An introduction to the mathematical theory of vibrations of elastic plates This book by the late R D Mindlin is destined to become a classic introduction to the mathematical aspects of two-dimensional theories of elastic plates. It systematically derives the two-dimensional theories of anisotropic elastic plates from the variational formulation of the three-dimensional theory of elasticity by power series expansions. The uniqueness of two-dimensional problems is also examined from the variational viewpoint. The accuracy of the two-dimensional equations is judged by comparing the dispersion relations of the waves that the two-dimensional theories can describe with prediction from the three-dimensional theory. Discussing mainly high-frequency dynamic problems, it is also useful in traditional applications in structural engineering as well as provides the theoretical foundation for acoustic wave devices TECHNOLOGY & ENGINEERING / Structural bisacsh Elastic plates and shells fast Nonlinear theories fast Vibration / Mathematical models fast Elastic plates and shells Vibration Mathematical models Nonlinear theories |
title | An introduction to the mathematical theory of vibrations of elastic plates |
title_auth | An introduction to the mathematical theory of vibrations of elastic plates |
title_exact_search | An introduction to the mathematical theory of vibrations of elastic plates |
title_full | An introduction to the mathematical theory of vibrations of elastic plates R.D. Mindlin ; edited by Jiashi Yang |
title_fullStr | An introduction to the mathematical theory of vibrations of elastic plates R.D. Mindlin ; edited by Jiashi Yang |
title_full_unstemmed | An introduction to the mathematical theory of vibrations of elastic plates R.D. Mindlin ; edited by Jiashi Yang |
title_short | An introduction to the mathematical theory of vibrations of elastic plates |
title_sort | an introduction to the mathematical theory of vibrations of elastic plates |
topic | TECHNOLOGY & ENGINEERING / Structural bisacsh Elastic plates and shells fast Nonlinear theories fast Vibration / Mathematical models fast Elastic plates and shells Vibration Mathematical models Nonlinear theories |
topic_facet | TECHNOLOGY & ENGINEERING / Structural Elastic plates and shells Nonlinear theories Vibration / Mathematical models Elastic plates and shells Vibration Mathematical models Nonlinear theories |
work_keys_str_mv | AT mindlinraymondd anintroductiontothemathematicaltheoryofvibrationsofelasticplates AT yangjiashi anintroductiontothemathematicaltheoryofvibrationsofelasticplates |