Computational methods for modelling of nonlinear systems: = Computational methods for modeling of nonlinear systems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam ; Boston
Elsevier
2007
|
Ausgabe: | 1st ed |
Schriftenreihe: | Mathematics in science and engineering
v. 212 |
Schlagworte: | |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (xi, 397 pages) illustrations (some color) |
ISBN: | 9780080475387 0080475388 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045341857 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 181206s2007 |||| o||u| ||||||eng d | ||
020 | |a 9780080475387 |9 978-0-08-047538-7 | ||
020 | |a 0080475388 |9 0-08-047538-8 | ||
020 | |z 9786611003906 |9 9786611003906 | ||
020 | |z 6611003908 |9 6611003908 | ||
035 | |a (ZDB-4-ENC)ocn162131543 | ||
035 | |a (OCoLC)162131543 | ||
035 | |a (DE-599)BVBBV045341857 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 515.72480113 |2 22 | |
100 | 1 | |a Torokhti, A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Computational methods for modelling of nonlinear systems |b = Computational methods for modeling of nonlinear systems |c A. Torokhti, P. Howlett |
246 | 1 | 3 | |a Computational methods for modeling of nonlinear systems |
246 | 1 | 1 | |a Computational methods for modeling of nonlinear systems |
250 | |a 1st ed | ||
264 | 1 | |a Amsterdam ; Boston |b Elsevier |c 2007 | |
300 | |a 1 online resource (xi, 397 pages) |b illustrations (some color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics in science and engineering |v v. 212 | |
500 | |a Print version record | ||
505 | 8 | |a In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation; methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory. As a result, the book represents a blend of new methods in general computational analysis, and specific, but also generic, techniques for study of systems theory ant its particular branches, such as optimal filtering and information compression. - Best operator approximation, - Non-Lagrange interpolation, - Generic Karhunen-Loeve transform - Generalised low-rank matrix approximation - Optimal data compression - Optimal nonlinear filtering | |
650 | 7 | |a MATHEMATICS / Functional Analysis |2 bisacsh | |
650 | 7 | |a Nonlinear systems / Mathematical models |2 fast | |
650 | 7 | |a Niet-lineaire systemen |2 gtt | |
650 | 7 | |a Optimaliseren |2 gtt | |
650 | 4 | |a Nonlinear systems |x Mathematical models | |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares System |0 (DE-588)4042110-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineares System |0 (DE-588)4042110-7 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Howlett, P. G. |d 1944- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Torokhti, A. (Anatoli) |t Computational methods for modelling of nonlinear systems |b 1st ed |d Amsterdam ; Boston : Elsevier, 2007 |z 9780444530448 |z 0444530444 |
912 | |a ZDB-4-ENC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030728560 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804179158998188032 |
---|---|
any_adam_object | |
author | Torokhti, A. |
author_facet | Torokhti, A. |
author_role | aut |
author_sort | Torokhti, A. |
author_variant | a t at |
building | Verbundindex |
bvnumber | BV045341857 |
collection | ZDB-4-ENC |
contents | In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation; methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory. As a result, the book represents a blend of new methods in general computational analysis, and specific, but also generic, techniques for study of systems theory ant its particular branches, such as optimal filtering and information compression. - Best operator approximation, - Non-Lagrange interpolation, - Generic Karhunen-Loeve transform - Generalised low-rank matrix approximation - Optimal data compression - Optimal nonlinear filtering |
ctrlnum | (ZDB-4-ENC)ocn162131543 (OCoLC)162131543 (DE-599)BVBBV045341857 |
dewey-full | 515.72480113 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.72480113 |
dewey-search | 515.72480113 |
dewey-sort | 3515.72480113 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03689nmm a2200565zcb4500</leader><controlfield tag="001">BV045341857</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181206s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080475387</subfield><subfield code="9">978-0-08-047538-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080475388</subfield><subfield code="9">0-08-047538-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9786611003906</subfield><subfield code="9">9786611003906</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">6611003908</subfield><subfield code="9">6611003908</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-ENC)ocn162131543</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162131543</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045341857</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.72480113</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Torokhti, A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational methods for modelling of nonlinear systems</subfield><subfield code="b">= Computational methods for modeling of nonlinear systems</subfield><subfield code="c">A. Torokhti, P. Howlett</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Computational methods for modeling of nonlinear systems</subfield></datafield><datafield tag="246" ind1="1" ind2="1"><subfield code="a">Computational methods for modeling of nonlinear systems</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam ; Boston</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 397 pages)</subfield><subfield code="b">illustrations (some color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics in science and engineering</subfield><subfield code="v">v. 212</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation; methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory. As a result, the book represents a blend of new methods in general computational analysis, and specific, but also generic, techniques for study of systems theory ant its particular branches, such as optimal filtering and information compression. - Best operator approximation, - Non-Lagrange interpolation, - Generic Karhunen-Loeve transform - Generalised low-rank matrix approximation - Optimal data compression - Optimal nonlinear filtering</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Functional Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear systems / Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Niet-lineaire systemen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimaliseren</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear systems</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares System</subfield><subfield code="0">(DE-588)4042110-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineares System</subfield><subfield code="0">(DE-588)4042110-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Howlett, P. G.</subfield><subfield code="d">1944-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Torokhti, A. (Anatoli)</subfield><subfield code="t">Computational methods for modelling of nonlinear systems</subfield><subfield code="b">1st ed</subfield><subfield code="d">Amsterdam ; Boston : Elsevier, 2007</subfield><subfield code="z">9780444530448</subfield><subfield code="z">0444530444</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-ENC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030728560</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV045341857 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:15:26Z |
institution | BVB |
isbn | 9780080475387 0080475388 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030728560 |
oclc_num | 162131543 |
open_access_boolean | |
physical | 1 online resource (xi, 397 pages) illustrations (some color) |
psigel | ZDB-4-ENC |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Elsevier |
record_format | marc |
series2 | Mathematics in science and engineering |
spelling | Torokhti, A. Verfasser aut Computational methods for modelling of nonlinear systems = Computational methods for modeling of nonlinear systems A. Torokhti, P. Howlett Computational methods for modeling of nonlinear systems 1st ed Amsterdam ; Boston Elsevier 2007 1 online resource (xi, 397 pages) illustrations (some color) txt rdacontent c rdamedia cr rdacarrier Mathematics in science and engineering v. 212 Print version record In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation; methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory. As a result, the book represents a blend of new methods in general computational analysis, and specific, but also generic, techniques for study of systems theory ant its particular branches, such as optimal filtering and information compression. - Best operator approximation, - Non-Lagrange interpolation, - Generic Karhunen-Loeve transform - Generalised low-rank matrix approximation - Optimal data compression - Optimal nonlinear filtering MATHEMATICS / Functional Analysis bisacsh Nonlinear systems / Mathematical models fast Niet-lineaire systemen gtt Optimaliseren gtt Nonlinear systems Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Nichtlineares System (DE-588)4042110-7 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Nichtlineares System (DE-588)4042110-7 s Mathematisches Modell (DE-588)4114528-8 s Numerisches Verfahren (DE-588)4128130-5 s 1\p DE-604 Howlett, P. G. 1944- Sonstige oth Erscheint auch als Druck-Ausgabe Torokhti, A. (Anatoli) Computational methods for modelling of nonlinear systems 1st ed Amsterdam ; Boston : Elsevier, 2007 9780444530448 0444530444 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Torokhti, A. Computational methods for modelling of nonlinear systems = Computational methods for modeling of nonlinear systems In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation; methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory. As a result, the book represents a blend of new methods in general computational analysis, and specific, but also generic, techniques for study of systems theory ant its particular branches, such as optimal filtering and information compression. - Best operator approximation, - Non-Lagrange interpolation, - Generic Karhunen-Loeve transform - Generalised low-rank matrix approximation - Optimal data compression - Optimal nonlinear filtering MATHEMATICS / Functional Analysis bisacsh Nonlinear systems / Mathematical models fast Niet-lineaire systemen gtt Optimaliseren gtt Nonlinear systems Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd Nichtlineares System (DE-588)4042110-7 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
subject_GND | (DE-588)4114528-8 (DE-588)4042110-7 (DE-588)4128130-5 |
title | Computational methods for modelling of nonlinear systems = Computational methods for modeling of nonlinear systems |
title_alt | Computational methods for modeling of nonlinear systems |
title_auth | Computational methods for modelling of nonlinear systems = Computational methods for modeling of nonlinear systems |
title_exact_search | Computational methods for modelling of nonlinear systems = Computational methods for modeling of nonlinear systems |
title_full | Computational methods for modelling of nonlinear systems = Computational methods for modeling of nonlinear systems A. Torokhti, P. Howlett |
title_fullStr | Computational methods for modelling of nonlinear systems = Computational methods for modeling of nonlinear systems A. Torokhti, P. Howlett |
title_full_unstemmed | Computational methods for modelling of nonlinear systems = Computational methods for modeling of nonlinear systems A. Torokhti, P. Howlett |
title_short | Computational methods for modelling of nonlinear systems |
title_sort | computational methods for modelling of nonlinear systems computational methods for modeling of nonlinear systems |
title_sub | = Computational methods for modeling of nonlinear systems |
topic | MATHEMATICS / Functional Analysis bisacsh Nonlinear systems / Mathematical models fast Niet-lineaire systemen gtt Optimaliseren gtt Nonlinear systems Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd Nichtlineares System (DE-588)4042110-7 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
topic_facet | MATHEMATICS / Functional Analysis Nonlinear systems / Mathematical models Niet-lineaire systemen Optimaliseren Nonlinear systems Mathematical models Mathematisches Modell Nichtlineares System Numerisches Verfahren |
work_keys_str_mv | AT torokhtia computationalmethodsformodellingofnonlinearsystemscomputationalmethodsformodelingofnonlinearsystems AT howlettpg computationalmethodsformodellingofnonlinearsystemscomputationalmethodsformodelingofnonlinearsystems AT torokhtia computationalmethodsformodelingofnonlinearsystems AT howlettpg computationalmethodsformodelingofnonlinearsystems |