Geometric measure theory: a beginner's guide
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
San Diego
Academic Press
2000
|
Ausgabe: | 3rd ed |
Schlagworte: | |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (ix, 226 pages) illustrations |
ISBN: | 9780080525600 0080525601 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045341734 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 181206s2000 |||| o||u| ||||||eng d | ||
020 | |a 9780080525600 |9 978-0-08-052560-0 | ||
020 | |a 0080525601 |9 0-08-052560-1 | ||
035 | |a (ZDB-4-ENC)ocn162129409 | ||
035 | |a (OCoLC)162129409 | ||
035 | |a (DE-599)BVBBV045341734 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 515/.42 |2 22 | |
100 | 1 | |a Morgan, Frank |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometric measure theory |b a beginner's guide |c Frank Morgan ; illustrated by James F. Bredt |
250 | |a 3rd ed | ||
264 | 1 | |a San Diego |b Academic Press |c 2000 | |
300 | |a 1 online resource (ix, 226 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Print version record | ||
505 | 8 | |a Geometric measure theory has become increasingly essential to geometry as well as numerous and varied physical applications. The third edition of this leading text/reference introduces the theory, the framework for the study of crystal growth, clusters of soap bubbles, and similar structures involving minimization of energy. Over the past thirty years, this theory has contributed to major advances in geometry and analysis including, for example, the original proof of the positive mass conjecture in cosmology. This third edition of Geometric Measure Theory: A Beginner's Guide presents, for the first time in print, the proofs of the double bubble and the hexagonal honeycomb conjectures. Four new chapters lead the reader through treatments of the Weaire-Phelan counterexample of Kelvin's conjecture, Almgren's optimal isoperimetric inequality, and immiscible fluids and crystals. The abundant illustrations, examples, exercises, and solutions in this book will enhance its reputation as the most accessible introduction to the subject | |
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 7 | |a Geometric measure theory |2 fast | |
650 | 4 | |a Geometric measure theory | |
650 | 0 | 7 | |a Geometrische Maßtheorie |0 (DE-588)4125258-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geometrische Maßtheorie |0 (DE-588)4125258-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Morgan, Frank |t Geometric measure theory |b 3rd ed |d San Diego : Academic Press, 2000 |z 0125068514 |z 9780125068512 |
912 | |a ZDB-4-ENC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030728437 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804179158752821248 |
---|---|
any_adam_object | |
author | Morgan, Frank |
author_facet | Morgan, Frank |
author_role | aut |
author_sort | Morgan, Frank |
author_variant | f m fm |
building | Verbundindex |
bvnumber | BV045341734 |
collection | ZDB-4-ENC |
contents | Geometric measure theory has become increasingly essential to geometry as well as numerous and varied physical applications. The third edition of this leading text/reference introduces the theory, the framework for the study of crystal growth, clusters of soap bubbles, and similar structures involving minimization of energy. Over the past thirty years, this theory has contributed to major advances in geometry and analysis including, for example, the original proof of the positive mass conjecture in cosmology. This third edition of Geometric Measure Theory: A Beginner's Guide presents, for the first time in print, the proofs of the double bubble and the hexagonal honeycomb conjectures. Four new chapters lead the reader through treatments of the Weaire-Phelan counterexample of Kelvin's conjecture, Almgren's optimal isoperimetric inequality, and immiscible fluids and crystals. The abundant illustrations, examples, exercises, and solutions in this book will enhance its reputation as the most accessible introduction to the subject |
ctrlnum | (ZDB-4-ENC)ocn162129409 (OCoLC)162129409 (DE-599)BVBBV045341734 |
dewey-full | 515/.42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.42 |
dewey-search | 515/.42 |
dewey-sort | 3515 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 3rd ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02625nmm a2200433zc 4500</leader><controlfield tag="001">BV045341734</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181206s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080525600</subfield><subfield code="9">978-0-08-052560-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080525601</subfield><subfield code="9">0-08-052560-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-ENC)ocn162129409</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162129409</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045341734</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.42</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Morgan, Frank</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric measure theory</subfield><subfield code="b">a beginner's guide</subfield><subfield code="c">Frank Morgan ; illustrated by James F. Bredt</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3rd ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">San Diego</subfield><subfield code="b">Academic Press</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 226 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Geometric measure theory has become increasingly essential to geometry as well as numerous and varied physical applications. The third edition of this leading text/reference introduces the theory, the framework for the study of crystal growth, clusters of soap bubbles, and similar structures involving minimization of energy. Over the past thirty years, this theory has contributed to major advances in geometry and analysis including, for example, the original proof of the positive mass conjecture in cosmology. This third edition of Geometric Measure Theory: A Beginner's Guide presents, for the first time in print, the proofs of the double bubble and the hexagonal honeycomb conjectures. Four new chapters lead the reader through treatments of the Weaire-Phelan counterexample of Kelvin's conjecture, Almgren's optimal isoperimetric inequality, and immiscible fluids and crystals. The abundant illustrations, examples, exercises, and solutions in this book will enhance its reputation as the most accessible introduction to the subject</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometric measure theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric measure theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Maßtheorie</subfield><subfield code="0">(DE-588)4125258-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrische Maßtheorie</subfield><subfield code="0">(DE-588)4125258-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Morgan, Frank</subfield><subfield code="t">Geometric measure theory</subfield><subfield code="b">3rd ed</subfield><subfield code="d">San Diego : Academic Press, 2000</subfield><subfield code="z">0125068514</subfield><subfield code="z">9780125068512</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-ENC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030728437</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV045341734 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:15:25Z |
institution | BVB |
isbn | 9780080525600 0080525601 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030728437 |
oclc_num | 162129409 |
open_access_boolean | |
physical | 1 online resource (ix, 226 pages) illustrations |
psigel | ZDB-4-ENC |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Academic Press |
record_format | marc |
spelling | Morgan, Frank Verfasser aut Geometric measure theory a beginner's guide Frank Morgan ; illustrated by James F. Bredt 3rd ed San Diego Academic Press 2000 1 online resource (ix, 226 pages) illustrations txt rdacontent c rdamedia cr rdacarrier Print version record Geometric measure theory has become increasingly essential to geometry as well as numerous and varied physical applications. The third edition of this leading text/reference introduces the theory, the framework for the study of crystal growth, clusters of soap bubbles, and similar structures involving minimization of energy. Over the past thirty years, this theory has contributed to major advances in geometry and analysis including, for example, the original proof of the positive mass conjecture in cosmology. This third edition of Geometric Measure Theory: A Beginner's Guide presents, for the first time in print, the proofs of the double bubble and the hexagonal honeycomb conjectures. Four new chapters lead the reader through treatments of the Weaire-Phelan counterexample of Kelvin's conjecture, Almgren's optimal isoperimetric inequality, and immiscible fluids and crystals. The abundant illustrations, examples, exercises, and solutions in this book will enhance its reputation as the most accessible introduction to the subject MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Geometric measure theory fast Geometric measure theory Geometrische Maßtheorie (DE-588)4125258-5 gnd rswk-swf Geometrische Maßtheorie (DE-588)4125258-5 s 1\p DE-604 Erscheint auch als Druck-Ausgabe Morgan, Frank Geometric measure theory 3rd ed San Diego : Academic Press, 2000 0125068514 9780125068512 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Morgan, Frank Geometric measure theory a beginner's guide Geometric measure theory has become increasingly essential to geometry as well as numerous and varied physical applications. The third edition of this leading text/reference introduces the theory, the framework for the study of crystal growth, clusters of soap bubbles, and similar structures involving minimization of energy. Over the past thirty years, this theory has contributed to major advances in geometry and analysis including, for example, the original proof of the positive mass conjecture in cosmology. This third edition of Geometric Measure Theory: A Beginner's Guide presents, for the first time in print, the proofs of the double bubble and the hexagonal honeycomb conjectures. Four new chapters lead the reader through treatments of the Weaire-Phelan counterexample of Kelvin's conjecture, Almgren's optimal isoperimetric inequality, and immiscible fluids and crystals. The abundant illustrations, examples, exercises, and solutions in this book will enhance its reputation as the most accessible introduction to the subject MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Geometric measure theory fast Geometric measure theory Geometrische Maßtheorie (DE-588)4125258-5 gnd |
subject_GND | (DE-588)4125258-5 |
title | Geometric measure theory a beginner's guide |
title_auth | Geometric measure theory a beginner's guide |
title_exact_search | Geometric measure theory a beginner's guide |
title_full | Geometric measure theory a beginner's guide Frank Morgan ; illustrated by James F. Bredt |
title_fullStr | Geometric measure theory a beginner's guide Frank Morgan ; illustrated by James F. Bredt |
title_full_unstemmed | Geometric measure theory a beginner's guide Frank Morgan ; illustrated by James F. Bredt |
title_short | Geometric measure theory |
title_sort | geometric measure theory a beginner s guide |
title_sub | a beginner's guide |
topic | MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Geometric measure theory fast Geometric measure theory Geometrische Maßtheorie (DE-588)4125258-5 gnd |
topic_facet | MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis Geometric measure theory Geometrische Maßtheorie |
work_keys_str_mv | AT morganfrank geometricmeasuretheoryabeginnersguide |