Lyapunov matrix equation in system stability and control:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
San Diego
Academic Press
1995
|
Schriftenreihe: | Mathematics in science and engineering
v. 195 |
Schlagworte: | |
Beschreibung: | Print version record. - Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 |
Beschreibung: | 1 online resource (xii, 255 pages) |
ISBN: | 9780122733703 0122733703 9780080535678 0080535674 1281032913 9781281032911 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045341712 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 181206s1995 |||| o||u| ||||||eng d | ||
020 | |a 9780122733703 |9 978-0-12-273370-3 | ||
020 | |a 0122733703 |9 0-12-273370-3 | ||
020 | |a 9780080535678 |9 978-0-08-053567-8 | ||
020 | |a 0080535674 |9 0-08-053567-4 | ||
020 | |a 1281032913 |9 1-281-03291-3 | ||
020 | |a 9781281032911 |9 978-1-281-03291-1 | ||
035 | |a (ZDB-4-ENC)ocn162129092 | ||
035 | |a (OCoLC)162129092 | ||
035 | |a (DE-599)BVBBV045341712 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 003/.85/01135 |2 22 | |
100 | 1 | |a Gajic, Zoran |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lyapunov matrix equation in system stability and control |c Zoran Gajic, Muhammad Tahir Javed Qureshi |
264 | 1 | |a San Diego |b Academic Press |c 1995 | |
300 | |a 1 online resource (xii, 255 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics in science and engineering |v v. 195 | |
500 | |a Print version record. - Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 | ||
505 | 8 | |a The Lyapunov and Riccati equations are two of the fundamental equations of control and system theory, having special relevance for system identification, optimization, boundary value problems, power systems, signal processing, and communications. The Lyapunov Matrix Equation in System Stability and Control covers mathematical developments and applications while providing quick and easy references for solutions to engineering and mathematical problems. Examples of real-world systems are given throughout the text in order to demonstrate the effectiveness of the presented methods and algorithms. The book will appeal to practicing engineers, theoreticians, applied mathematicians, and graduate students who seek a comprehensive view of the main results of the Lyapunov matrix equation. Presents techniques for solving and analyzing the algebraic, differential, and difference Lyapunov matrix equations of continuous-time and discrete-time systems Offers summaries and references at the end of each chapter Contains examples of the use of the equation to solve real-world problems Provides quick and easy references for the solutions to engineering and mathematical problems using the Lyapunov equation | |
650 | 7 | |a SCIENCE / Chaotic Behavior in Systems |2 bisacsh | |
650 | 7 | |a Control theory |2 fast | |
650 | 7 | |a Lyapunov stability |2 fast | |
650 | 7 | |a Controleleer |2 gtt | |
650 | 7 | |a Matrices |2 gtt | |
650 | 4 | |a Control theory |a Lyapunov stability | |
650 | 0 | 7 | |a Kontrolltheorie |0 (DE-588)4032317-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ljapunov-Gleichung |0 (DE-588)4524572-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ljapunov-Stabilitätstheorie |0 (DE-588)4167992-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimale Kontrolle |0 (DE-588)4121428-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrizenrechnung |0 (DE-588)4126963-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ljapunov-Gleichung |0 (DE-588)4524572-1 |D s |
689 | 0 | 1 | |a Optimale Kontrolle |0 (DE-588)4121428-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Ljapunov-Stabilitätstheorie |0 (DE-588)4167992-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Matrizenrechnung |0 (DE-588)4126963-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Kontrolltheorie |0 (DE-588)4032317-1 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
700 | 1 | |a Qureshi, Muhammad Tahir Javed |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Gajic, Zoran |t Lyapunov matrix equation in system stability and control |d San Diego : Academic Press, 1995 |z 0122733703 |z 9780122733703 |
912 | |a ZDB-4-ENC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030728416 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804179158693052416 |
---|---|
any_adam_object | |
author | Gajic, Zoran |
author_facet | Gajic, Zoran |
author_role | aut |
author_sort | Gajic, Zoran |
author_variant | z g zg |
building | Verbundindex |
bvnumber | BV045341712 |
collection | ZDB-4-ENC |
contents | The Lyapunov and Riccati equations are two of the fundamental equations of control and system theory, having special relevance for system identification, optimization, boundary value problems, power systems, signal processing, and communications. The Lyapunov Matrix Equation in System Stability and Control covers mathematical developments and applications while providing quick and easy references for solutions to engineering and mathematical problems. Examples of real-world systems are given throughout the text in order to demonstrate the effectiveness of the presented methods and algorithms. The book will appeal to practicing engineers, theoreticians, applied mathematicians, and graduate students who seek a comprehensive view of the main results of the Lyapunov matrix equation. Presents techniques for solving and analyzing the algebraic, differential, and difference Lyapunov matrix equations of continuous-time and discrete-time systems Offers summaries and references at the end of each chapter Contains examples of the use of the equation to solve real-world problems Provides quick and easy references for the solutions to engineering and mathematical problems using the Lyapunov equation |
ctrlnum | (ZDB-4-ENC)ocn162129092 (OCoLC)162129092 (DE-599)BVBBV045341712 |
dewey-full | 003/.85/01135 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003/.85/01135 |
dewey-search | 003/.85/01135 |
dewey-sort | 13 285 41135 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04183nmm a2200685zcb4500</leader><controlfield tag="001">BV045341712</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181206s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780122733703</subfield><subfield code="9">978-0-12-273370-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0122733703</subfield><subfield code="9">0-12-273370-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080535678</subfield><subfield code="9">978-0-08-053567-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080535674</subfield><subfield code="9">0-08-053567-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281032913</subfield><subfield code="9">1-281-03291-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281032911</subfield><subfield code="9">978-1-281-03291-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-ENC)ocn162129092</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162129092</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045341712</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003/.85/01135</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gajic, Zoran</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lyapunov matrix equation in system stability and control</subfield><subfield code="c">Zoran Gajic, Muhammad Tahir Javed Qureshi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">San Diego</subfield><subfield code="b">Academic Press</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 255 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics in science and engineering</subfield><subfield code="v">v. 195</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record. - Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The Lyapunov and Riccati equations are two of the fundamental equations of control and system theory, having special relevance for system identification, optimization, boundary value problems, power systems, signal processing, and communications. The Lyapunov Matrix Equation in System Stability and Control covers mathematical developments and applications while providing quick and easy references for solutions to engineering and mathematical problems. Examples of real-world systems are given throughout the text in order to demonstrate the effectiveness of the presented methods and algorithms. The book will appeal to practicing engineers, theoreticians, applied mathematicians, and graduate students who seek a comprehensive view of the main results of the Lyapunov matrix equation. Presents techniques for solving and analyzing the algebraic, differential, and difference Lyapunov matrix equations of continuous-time and discrete-time systems Offers summaries and references at the end of each chapter Contains examples of the use of the equation to solve real-world problems Provides quick and easy references for the solutions to engineering and mathematical problems using the Lyapunov equation</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Chaotic Behavior in Systems</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Control theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lyapunov stability</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Controleleer</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrices</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control theory</subfield><subfield code="a">Lyapunov stability</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ljapunov-Gleichung</subfield><subfield code="0">(DE-588)4524572-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ljapunov-Stabilitätstheorie</subfield><subfield code="0">(DE-588)4167992-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizenrechnung</subfield><subfield code="0">(DE-588)4126963-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ljapunov-Gleichung</subfield><subfield code="0">(DE-588)4524572-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Ljapunov-Stabilitätstheorie</subfield><subfield code="0">(DE-588)4167992-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Matrizenrechnung</subfield><subfield code="0">(DE-588)4126963-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qureshi, Muhammad Tahir Javed</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Gajic, Zoran</subfield><subfield code="t">Lyapunov matrix equation in system stability and control</subfield><subfield code="d">San Diego : Academic Press, 1995</subfield><subfield code="z">0122733703</subfield><subfield code="z">9780122733703</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-ENC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030728416</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV045341712 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:15:25Z |
institution | BVB |
isbn | 9780122733703 0122733703 9780080535678 0080535674 1281032913 9781281032911 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030728416 |
oclc_num | 162129092 |
open_access_boolean | |
physical | 1 online resource (xii, 255 pages) |
psigel | ZDB-4-ENC |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Academic Press |
record_format | marc |
series2 | Mathematics in science and engineering |
spelling | Gajic, Zoran Verfasser aut Lyapunov matrix equation in system stability and control Zoran Gajic, Muhammad Tahir Javed Qureshi San Diego Academic Press 1995 1 online resource (xii, 255 pages) txt rdacontent c rdamedia cr rdacarrier Mathematics in science and engineering v. 195 Print version record. - Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 The Lyapunov and Riccati equations are two of the fundamental equations of control and system theory, having special relevance for system identification, optimization, boundary value problems, power systems, signal processing, and communications. The Lyapunov Matrix Equation in System Stability and Control covers mathematical developments and applications while providing quick and easy references for solutions to engineering and mathematical problems. Examples of real-world systems are given throughout the text in order to demonstrate the effectiveness of the presented methods and algorithms. The book will appeal to practicing engineers, theoreticians, applied mathematicians, and graduate students who seek a comprehensive view of the main results of the Lyapunov matrix equation. Presents techniques for solving and analyzing the algebraic, differential, and difference Lyapunov matrix equations of continuous-time and discrete-time systems Offers summaries and references at the end of each chapter Contains examples of the use of the equation to solve real-world problems Provides quick and easy references for the solutions to engineering and mathematical problems using the Lyapunov equation SCIENCE / Chaotic Behavior in Systems bisacsh Control theory fast Lyapunov stability fast Controleleer gtt Matrices gtt Control theory Lyapunov stability Kontrolltheorie (DE-588)4032317-1 gnd rswk-swf Ljapunov-Gleichung (DE-588)4524572-1 gnd rswk-swf Ljapunov-Stabilitätstheorie (DE-588)4167992-1 gnd rswk-swf Optimale Kontrolle (DE-588)4121428-6 gnd rswk-swf Matrizenrechnung (DE-588)4126963-9 gnd rswk-swf Ljapunov-Gleichung (DE-588)4524572-1 s Optimale Kontrolle (DE-588)4121428-6 s 1\p DE-604 Ljapunov-Stabilitätstheorie (DE-588)4167992-1 s 2\p DE-604 Matrizenrechnung (DE-588)4126963-9 s 3\p DE-604 Kontrolltheorie (DE-588)4032317-1 s 4\p DE-604 Qureshi, Muhammad Tahir Javed Sonstige oth Erscheint auch als Druck-Ausgabe Gajic, Zoran Lyapunov matrix equation in system stability and control San Diego : Academic Press, 1995 0122733703 9780122733703 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gajic, Zoran Lyapunov matrix equation in system stability and control The Lyapunov and Riccati equations are two of the fundamental equations of control and system theory, having special relevance for system identification, optimization, boundary value problems, power systems, signal processing, and communications. The Lyapunov Matrix Equation in System Stability and Control covers mathematical developments and applications while providing quick and easy references for solutions to engineering and mathematical problems. Examples of real-world systems are given throughout the text in order to demonstrate the effectiveness of the presented methods and algorithms. The book will appeal to practicing engineers, theoreticians, applied mathematicians, and graduate students who seek a comprehensive view of the main results of the Lyapunov matrix equation. Presents techniques for solving and analyzing the algebraic, differential, and difference Lyapunov matrix equations of continuous-time and discrete-time systems Offers summaries and references at the end of each chapter Contains examples of the use of the equation to solve real-world problems Provides quick and easy references for the solutions to engineering and mathematical problems using the Lyapunov equation SCIENCE / Chaotic Behavior in Systems bisacsh Control theory fast Lyapunov stability fast Controleleer gtt Matrices gtt Control theory Lyapunov stability Kontrolltheorie (DE-588)4032317-1 gnd Ljapunov-Gleichung (DE-588)4524572-1 gnd Ljapunov-Stabilitätstheorie (DE-588)4167992-1 gnd Optimale Kontrolle (DE-588)4121428-6 gnd Matrizenrechnung (DE-588)4126963-9 gnd |
subject_GND | (DE-588)4032317-1 (DE-588)4524572-1 (DE-588)4167992-1 (DE-588)4121428-6 (DE-588)4126963-9 |
title | Lyapunov matrix equation in system stability and control |
title_auth | Lyapunov matrix equation in system stability and control |
title_exact_search | Lyapunov matrix equation in system stability and control |
title_full | Lyapunov matrix equation in system stability and control Zoran Gajic, Muhammad Tahir Javed Qureshi |
title_fullStr | Lyapunov matrix equation in system stability and control Zoran Gajic, Muhammad Tahir Javed Qureshi |
title_full_unstemmed | Lyapunov matrix equation in system stability and control Zoran Gajic, Muhammad Tahir Javed Qureshi |
title_short | Lyapunov matrix equation in system stability and control |
title_sort | lyapunov matrix equation in system stability and control |
topic | SCIENCE / Chaotic Behavior in Systems bisacsh Control theory fast Lyapunov stability fast Controleleer gtt Matrices gtt Control theory Lyapunov stability Kontrolltheorie (DE-588)4032317-1 gnd Ljapunov-Gleichung (DE-588)4524572-1 gnd Ljapunov-Stabilitätstheorie (DE-588)4167992-1 gnd Optimale Kontrolle (DE-588)4121428-6 gnd Matrizenrechnung (DE-588)4126963-9 gnd |
topic_facet | SCIENCE / Chaotic Behavior in Systems Control theory Lyapunov stability Controleleer Matrices Control theory Lyapunov stability Kontrolltheorie Ljapunov-Gleichung Ljapunov-Stabilitätstheorie Optimale Kontrolle Matrizenrechnung |
work_keys_str_mv | AT gajiczoran lyapunovmatrixequationinsystemstabilityandcontrol AT qureshimuhammadtahirjaved lyapunovmatrixequationinsystemstabilityandcontrol |