A student's guide to Fourier transforms: with applications in physics and engineering
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, U.K. ; New York
Cambridge University Press
2002
|
Ausgabe: | 2nd ed |
Schlagworte: | |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (ix, 135 pages) illustrations |
ISBN: | 0511078021 9780511078026 9781139164917 1139164910 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045341188 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 181206s2002 |||| o||u| ||||||eng d | ||
020 | |a 0511078021 |9 0-511-07802-1 | ||
020 | |a 9780511078026 |9 978-0-511-07802-6 | ||
020 | |a 9781139164917 |9 978-1-139-16491-7 | ||
020 | |a 1139164910 |9 1-139-16491-0 | ||
024 | 3 | |a 9780511078026 | |
035 | |a (ZDB-4-ENC)ocm57417441 | ||
035 | |a (OCoLC)57417441 | ||
035 | |a (DE-599)BVBBV045341188 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 515/.723 |2 22 | |
100 | 1 | |a James, J. F. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A student's guide to Fourier transforms |b with applications in physics and engineering |c J.F. James |
250 | |a 2nd ed | ||
264 | 1 | |a Cambridge, U.K. ; New York |b Cambridge University Press |c 2002 | |
300 | |a 1 online resource (ix, 135 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Print version record | ||
505 | 8 | |a Fourier transform theory is of central importance in a vast range of applications in physical science, engineering, and applied mathematics. This new edition of a successful student text provides a concise introduction to the theory and practice of Fourier transforms, using qualitative arguments wherever possible and avoiding unnecessary mathematics. After a brief description of the basic ideas and theorems, the power of the technique is then illustrated by referring to particular applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of computer-aided tomography (CAT-scanning). The final chapter discusses digital methods, with particular attention to the fast Fourier transform. Throughout, discussion of these applications is reinforced by the inclusion of worked examples. The book assumes no previous knowledge of the subject, and will be invaluable to students of physics, electrical and electronic engineering, and computer science | |
650 | 7 | |a MATHEMATICS / Functional Analysis |2 bisacsh | |
650 | 7 | |a Fourier transformations |2 cct | |
650 | 7 | |a Mathematical physics |2 cct | |
650 | 7 | |a Engineering mathematics |2 cct | |
650 | 7 | |a Engineering mathematics |2 fast | |
650 | 7 | |a Fourier transformations |2 fast | |
650 | 7 | |a Mathematical physics |2 fast | |
650 | 7 | |a Fourier-transformatie |2 gtt | |
650 | 7 | |a Mathematische fysica |2 gtt | |
650 | 7 | |a Fourier-Transformation |2 swd | |
650 | 7 | |a Ingenieurwissenschaften |2 swd | |
650 | 7 | |a Mathematische Physik |2 swd | |
650 | 4 | |a Fourier transformations |a Mathematical physics |a Engineering mathematics | |
650 | 0 | 7 | |a Fourier-Transformation |0 (DE-588)4018014-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ingenieurwissenschaften |0 (DE-588)4137304-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fourier-Transformation |0 (DE-588)4018014-1 |D s |
689 | 0 | 1 | |a Ingenieurwissenschaften |0 (DE-588)4137304-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Fourier-Transformation |0 (DE-588)4018014-1 |D s |
689 | 1 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a James, J.F. (John Francis) |t Student's guide to Fourier transforms |b 2nd ed |d Cambridge, U.K. ; New York : Cambridge University Press, 2002 |z 052180826X |z 0521004284 |
912 | |a ZDB-4-ENC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030727892 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804179157626650624 |
---|---|
any_adam_object | |
author | James, J. F. |
author_facet | James, J. F. |
author_role | aut |
author_sort | James, J. F. |
author_variant | j f j jf jfj |
building | Verbundindex |
bvnumber | BV045341188 |
collection | ZDB-4-ENC |
contents | Fourier transform theory is of central importance in a vast range of applications in physical science, engineering, and applied mathematics. This new edition of a successful student text provides a concise introduction to the theory and practice of Fourier transforms, using qualitative arguments wherever possible and avoiding unnecessary mathematics. After a brief description of the basic ideas and theorems, the power of the technique is then illustrated by referring to particular applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of computer-aided tomography (CAT-scanning). The final chapter discusses digital methods, with particular attention to the fast Fourier transform. Throughout, discussion of these applications is reinforced by the inclusion of worked examples. The book assumes no previous knowledge of the subject, and will be invaluable to students of physics, electrical and electronic engineering, and computer science |
ctrlnum | (ZDB-4-ENC)ocm57417441 (OCoLC)57417441 (DE-599)BVBBV045341188 |
dewey-full | 515/.723 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.723 |
dewey-search | 515/.723 |
dewey-sort | 3515 3723 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2nd ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03741nmm a2200661zc 4500</leader><controlfield tag="001">BV045341188</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181206s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511078021</subfield><subfield code="9">0-511-07802-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511078026</subfield><subfield code="9">978-0-511-07802-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139164917</subfield><subfield code="9">978-1-139-16491-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139164910</subfield><subfield code="9">1-139-16491-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780511078026</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-ENC)ocm57417441</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)57417441</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045341188</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.723</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">James, J. F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A student's guide to Fourier transforms</subfield><subfield code="b">with applications in physics and engineering</subfield><subfield code="c">J.F. James</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, U.K. ; New York</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 135 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Fourier transform theory is of central importance in a vast range of applications in physical science, engineering, and applied mathematics. This new edition of a successful student text provides a concise introduction to the theory and practice of Fourier transforms, using qualitative arguments wherever possible and avoiding unnecessary mathematics. After a brief description of the basic ideas and theorems, the power of the technique is then illustrated by referring to particular applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of computer-aided tomography (CAT-scanning). The final chapter discusses digital methods, with particular attention to the fast Fourier transform. Throughout, discussion of these applications is reinforced by the inclusion of worked examples. The book assumes no previous knowledge of the subject, and will be invaluable to students of physics, electrical and electronic engineering, and computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Functional Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fourier transformations</subfield><subfield code="2">cct</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">cct</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Engineering mathematics</subfield><subfield code="2">cct</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Engineering mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fourier transformations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fourier-transformatie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematische fysica</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fourier-Transformation</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ingenieurwissenschaften</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier transformations</subfield><subfield code="a">Mathematical physics</subfield><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fourier-Transformation</subfield><subfield code="0">(DE-588)4018014-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ingenieurwissenschaften</subfield><subfield code="0">(DE-588)4137304-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fourier-Transformation</subfield><subfield code="0">(DE-588)4018014-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ingenieurwissenschaften</subfield><subfield code="0">(DE-588)4137304-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Fourier-Transformation</subfield><subfield code="0">(DE-588)4018014-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">James, J.F. (John Francis)</subfield><subfield code="t">Student's guide to Fourier transforms</subfield><subfield code="b">2nd ed</subfield><subfield code="d">Cambridge, U.K. ; New York : Cambridge University Press, 2002</subfield><subfield code="z">052180826X</subfield><subfield code="z">0521004284</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-ENC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030727892</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV045341188 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:15:24Z |
institution | BVB |
isbn | 0511078021 9780511078026 9781139164917 1139164910 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030727892 |
oclc_num | 57417441 |
open_access_boolean | |
physical | 1 online resource (ix, 135 pages) illustrations |
psigel | ZDB-4-ENC |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge University Press |
record_format | marc |
spelling | James, J. F. Verfasser aut A student's guide to Fourier transforms with applications in physics and engineering J.F. James 2nd ed Cambridge, U.K. ; New York Cambridge University Press 2002 1 online resource (ix, 135 pages) illustrations txt rdacontent c rdamedia cr rdacarrier Print version record Fourier transform theory is of central importance in a vast range of applications in physical science, engineering, and applied mathematics. This new edition of a successful student text provides a concise introduction to the theory and practice of Fourier transforms, using qualitative arguments wherever possible and avoiding unnecessary mathematics. After a brief description of the basic ideas and theorems, the power of the technique is then illustrated by referring to particular applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of computer-aided tomography (CAT-scanning). The final chapter discusses digital methods, with particular attention to the fast Fourier transform. Throughout, discussion of these applications is reinforced by the inclusion of worked examples. The book assumes no previous knowledge of the subject, and will be invaluable to students of physics, electrical and electronic engineering, and computer science MATHEMATICS / Functional Analysis bisacsh Fourier transformations cct Mathematical physics cct Engineering mathematics cct Engineering mathematics fast Fourier transformations fast Mathematical physics fast Fourier-transformatie gtt Mathematische fysica gtt Fourier-Transformation swd Ingenieurwissenschaften swd Mathematische Physik swd Fourier transformations Mathematical physics Engineering mathematics Fourier-Transformation (DE-588)4018014-1 gnd rswk-swf Ingenieurwissenschaften (DE-588)4137304-2 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Fourier-Transformation (DE-588)4018014-1 s Ingenieurwissenschaften (DE-588)4137304-2 s 1\p DE-604 Mathematische Physik (DE-588)4037952-8 s 2\p DE-604 Erscheint auch als Druck-Ausgabe James, J.F. (John Francis) Student's guide to Fourier transforms 2nd ed Cambridge, U.K. ; New York : Cambridge University Press, 2002 052180826X 0521004284 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | James, J. F. A student's guide to Fourier transforms with applications in physics and engineering Fourier transform theory is of central importance in a vast range of applications in physical science, engineering, and applied mathematics. This new edition of a successful student text provides a concise introduction to the theory and practice of Fourier transforms, using qualitative arguments wherever possible and avoiding unnecessary mathematics. After a brief description of the basic ideas and theorems, the power of the technique is then illustrated by referring to particular applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of computer-aided tomography (CAT-scanning). The final chapter discusses digital methods, with particular attention to the fast Fourier transform. Throughout, discussion of these applications is reinforced by the inclusion of worked examples. The book assumes no previous knowledge of the subject, and will be invaluable to students of physics, electrical and electronic engineering, and computer science MATHEMATICS / Functional Analysis bisacsh Fourier transformations cct Mathematical physics cct Engineering mathematics cct Engineering mathematics fast Fourier transformations fast Mathematical physics fast Fourier-transformatie gtt Mathematische fysica gtt Fourier-Transformation swd Ingenieurwissenschaften swd Mathematische Physik swd Fourier transformations Mathematical physics Engineering mathematics Fourier-Transformation (DE-588)4018014-1 gnd Ingenieurwissenschaften (DE-588)4137304-2 gnd Mathematische Physik (DE-588)4037952-8 gnd |
subject_GND | (DE-588)4018014-1 (DE-588)4137304-2 (DE-588)4037952-8 |
title | A student's guide to Fourier transforms with applications in physics and engineering |
title_auth | A student's guide to Fourier transforms with applications in physics and engineering |
title_exact_search | A student's guide to Fourier transforms with applications in physics and engineering |
title_full | A student's guide to Fourier transforms with applications in physics and engineering J.F. James |
title_fullStr | A student's guide to Fourier transforms with applications in physics and engineering J.F. James |
title_full_unstemmed | A student's guide to Fourier transforms with applications in physics and engineering J.F. James |
title_short | A student's guide to Fourier transforms |
title_sort | a student s guide to fourier transforms with applications in physics and engineering |
title_sub | with applications in physics and engineering |
topic | MATHEMATICS / Functional Analysis bisacsh Fourier transformations cct Mathematical physics cct Engineering mathematics cct Engineering mathematics fast Fourier transformations fast Mathematical physics fast Fourier-transformatie gtt Mathematische fysica gtt Fourier-Transformation swd Ingenieurwissenschaften swd Mathematische Physik swd Fourier transformations Mathematical physics Engineering mathematics Fourier-Transformation (DE-588)4018014-1 gnd Ingenieurwissenschaften (DE-588)4137304-2 gnd Mathematische Physik (DE-588)4037952-8 gnd |
topic_facet | MATHEMATICS / Functional Analysis Fourier transformations Mathematical physics Engineering mathematics Fourier-transformatie Mathematische fysica Fourier-Transformation Ingenieurwissenschaften Mathematische Physik Fourier transformations Mathematical physics Engineering mathematics |
work_keys_str_mv | AT jamesjf astudentsguidetofouriertransformswithapplicationsinphysicsandengineering |