Feature engineering for machine learning: principles and techniques for data scientists
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Beijing
O'Reilly
April 2018
|
Ausgabe: | First edition |
Schlagworte: | |
Online-Zugang: | FWS01 FWS02 |
Beschreibung: | 1 Online-Ressource (217 Seiten) Illustrationen, Diagramme |
ISBN: | 9781491953211 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV045307447 | ||
003 | DE-604 | ||
005 | 20191113 | ||
007 | cr|uuu---uuuuu | ||
008 | 181124s2018 |||| o||u| ||||||eng d | ||
020 | |a 9781491953211 |9 978-1-491-95321-1 | ||
035 | |a (OCoLC)1076303254 | ||
035 | |a (DE-599)BVBBV045307447 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-863 |a DE-862 |a DE-83 | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
100 | 1 | |a Zheng, Alice |e Verfasser |0 (DE-588)1156465044 |4 aut | |
245 | 1 | 0 | |a Feature engineering for machine learning |b principles and techniques for data scientists |c Alice Zheng and Amanda Casari |
250 | |a First edition | ||
264 | 1 | |a Beijing |b O'Reilly |c April 2018 | |
300 | |a 1 Online-Ressource (217 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 0 | 7 | |a NumPy |0 (DE-588)1192378229 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenaufbereitung |0 (DE-588)4148865-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a pandas |g Software |0 (DE-588)1192378490 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Merkmalsextraktion |0 (DE-588)4314440-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Rohdaten |0 (DE-588)4875810-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | 1 | |a Datenaufbereitung |0 (DE-588)4148865-9 |D s |
689 | 1 | 2 | |a Rohdaten |0 (DE-588)4875810-3 |D s |
689 | 1 | 3 | |a Merkmalsextraktion |0 (DE-588)4314440-8 |D s |
689 | 1 | 4 | |a NumPy |0 (DE-588)1192378229 |D s |
689 | 1 | 5 | |a pandas |g Software |0 (DE-588)1192378490 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Casari, Amanda |e Verfasser |0 (DE-588)1156465192 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-491-95324-2 |
912 | |a ZDB-30-PQE |a ZDB-4-NLEBK | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030694473 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://ebookcentral.proquest.com/lib/fhws/detail.action?docID=5328406 |l FWS01 |p ZDB-30-PQE |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/fhws/detail.action?docID=5328406 |l FWS02 |p ZDB-30-PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 709101 |
---|---|
_version_ | 1824554776299307008 |
any_adam_object | |
author | Zheng, Alice Casari, Amanda |
author_GND | (DE-588)1156465044 (DE-588)1156465192 |
author_facet | Zheng, Alice Casari, Amanda |
author_role | aut aut |
author_sort | Zheng, Alice |
author_variant | a z az a c ac |
building | Verbundindex |
bvnumber | BV045307447 |
classification_rvk | ST 302 |
collection | ZDB-30-PQE ZDB-4-NLEBK |
ctrlnum | (OCoLC)1076303254 (DE-599)BVBBV045307447 |
discipline | Informatik |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02382nmm a2200553 c 4500</leader><controlfield tag="001">BV045307447</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191113 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181124s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781491953211</subfield><subfield code="9">978-1-491-95321-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1076303254</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045307447</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zheng, Alice</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1156465044</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feature engineering for machine learning</subfield><subfield code="b">principles and techniques for data scientists</subfield><subfield code="c">Alice Zheng and Amanda Casari</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beijing</subfield><subfield code="b">O'Reilly</subfield><subfield code="c">April 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (217 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">NumPy</subfield><subfield code="0">(DE-588)1192378229</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenaufbereitung</subfield><subfield code="0">(DE-588)4148865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">pandas</subfield><subfield code="g">Software</subfield><subfield code="0">(DE-588)1192378490</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Merkmalsextraktion</subfield><subfield code="0">(DE-588)4314440-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rohdaten</subfield><subfield code="0">(DE-588)4875810-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Datenaufbereitung</subfield><subfield code="0">(DE-588)4148865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Rohdaten</subfield><subfield code="0">(DE-588)4875810-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Merkmalsextraktion</subfield><subfield code="0">(DE-588)4314440-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="4"><subfield code="a">NumPy</subfield><subfield code="0">(DE-588)1192378229</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="5"><subfield code="a">pandas</subfield><subfield code="g">Software</subfield><subfield code="0">(DE-588)1192378490</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Casari, Amanda</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1156465192</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-491-95324-2</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-4-NLEBK</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030694473</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/fhws/detail.action?docID=5328406</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/fhws/detail.action?docID=5328406</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045307447 |
illustrated | Not Illustrated |
indexdate | 2025-02-20T06:57:08Z |
institution | BVB |
isbn | 9781491953211 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030694473 |
oclc_num | 1076303254 |
open_access_boolean | |
owner | DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-83 |
owner_facet | DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-83 |
physical | 1 Online-Ressource (217 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-4-NLEBK |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | O'Reilly |
record_format | marc |
spellingShingle | Zheng, Alice Casari, Amanda Feature engineering for machine learning principles and techniques for data scientists NumPy (DE-588)1192378229 gnd Datenaufbereitung (DE-588)4148865-9 gnd pandas Software (DE-588)1192378490 gnd Merkmalsextraktion (DE-588)4314440-8 gnd Datenanalyse (DE-588)4123037-1 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Rohdaten (DE-588)4875810-3 gnd |
subject_GND | (DE-588)1192378229 (DE-588)4148865-9 (DE-588)1192378490 (DE-588)4314440-8 (DE-588)4123037-1 (DE-588)4193754-5 (DE-588)4875810-3 |
title | Feature engineering for machine learning principles and techniques for data scientists |
title_auth | Feature engineering for machine learning principles and techniques for data scientists |
title_exact_search | Feature engineering for machine learning principles and techniques for data scientists |
title_full | Feature engineering for machine learning principles and techniques for data scientists Alice Zheng and Amanda Casari |
title_fullStr | Feature engineering for machine learning principles and techniques for data scientists Alice Zheng and Amanda Casari |
title_full_unstemmed | Feature engineering for machine learning principles and techniques for data scientists Alice Zheng and Amanda Casari |
title_short | Feature engineering for machine learning |
title_sort | feature engineering for machine learning principles and techniques for data scientists |
title_sub | principles and techniques for data scientists |
topic | NumPy (DE-588)1192378229 gnd Datenaufbereitung (DE-588)4148865-9 gnd pandas Software (DE-588)1192378490 gnd Merkmalsextraktion (DE-588)4314440-8 gnd Datenanalyse (DE-588)4123037-1 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Rohdaten (DE-588)4875810-3 gnd |
topic_facet | NumPy Datenaufbereitung pandas Software Merkmalsextraktion Datenanalyse Maschinelles Lernen Rohdaten |
work_keys_str_mv | AT zhengalice featureengineeringformachinelearningprinciplesandtechniquesfordatascientists AT casariamanda featureengineeringformachinelearningprinciplesandtechniquesfordatascientists |