Introduction to stochastic processes:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo
World Scientific
[2021]
|
Schriftenreihe: | World Scientific series on probability theory and its applications
Volume 2 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xiii, 230 Seiten Diagramme |
ISBN: | 9789814740302 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV045300596 | ||
003 | DE-604 | ||
005 | 20231101 | ||
007 | t | ||
008 | 181121s2021 |||| |||| 00||| eng d | ||
020 | |a 9789814740302 |c hc |9 978-981-4740-30-2 | ||
035 | |a (OCoLC)1261744016 | ||
035 | |a (DE-599)BVBBV045300596 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-739 |a DE-945 |a DE-N2 |a DE-91G |a DE-83 | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a QH 237 |0 (DE-625)141552: |2 rvk | ||
084 | |a 60J10 |2 msc/2020 | ||
084 | |a MAT 605 |2 stub | ||
084 | |a 60G05 |2 msc/2020 | ||
100 | 1 | |a Chen, Mufa |d 1947- |0 (DE-588)129732095 |4 aut | |
245 | 1 | 0 | |a Introduction to stochastic processes |c Mu-Fa Chen ; Yong-Hua Mao ; Beijing Normal University, China |
264 | 1 | |a New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo |b World Scientific |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a xiii, 230 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a World Scientific series on probability theory and its applications |v Volume 2 | |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastische Analysis |0 (DE-588)4132272-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | 1 | |a Stochastische Analysis |0 (DE-588)4132272-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Mao, Yong-Hua |d ca. 20./21. Jh. |0 (DE-588)1247132315 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-981-4740-31-9 |
830 | 0 | |a World Scientific series on probability theory and its applications |v Volume 2 |w (DE-604)BV042764310 |9 2 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030687745&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030687745 |
Datensatz im Suchindex
_version_ | 1804179085362987008 |
---|---|
adam_text | Contents Preface to the English Edition v Preface to the Chinese Edition vii Markov Processes 1 1. 3 Discrete-Time Markov Chains 1.1 1.2 1.3 1.4 1.5 1.6 2. 3. Stochastic Models for Economic Optimization and Markov Chains.................................................................... Discrete-Time Markov Chains. Recurrence and Ergodicity Limit Theorems in General Situation................................ Criteria. The Minimal Nonnegative Solution..................... Some Typical Discrete-Time Markov Chains..................... Supplements and Exercises.................................................. 3 11 24 30 39 44 Continuous-Time Markov Chains 55 2.1 2.2 2.3 2.4 2.5 55 63 70 78 82 Continuous-Time Markov Chains. Uniqueness.................. Recurrence and Ergodicity.................................................. Single Birth Processes and Birth-Death Processes............ Branching Processes and Extended Branching Processes . Supplements and Exercises.................................................. Reversible Markov Chains 89 3.1 3.2 89 91 Reversible and Symmetrizable Markov Chains.................. Estimate of Spectral Gap .................................................. xi
CONTENTS Xli 3.3 3.4 4. Appendix: Spectral Representation of Reversible Markov Chains...................................................................................... Supplements and Exercises..................................................... General Markov Processes 109 4.1 4.2 4.3 109 114 4.4 Markov Property and Its Equivalence ................................... Strong Markov Property........................................................ Appendix: Optimal Stopping Problem—The Secretary Problem................................................................................... Supplements and Exercises.................................................... Stochastic Analysis 5. Martingale 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6. 7. 105 119 121 123 125 Definitions and Basic Properties........................................... 125 Doob’s Stopping Theorem..................................................... 127 Fundamental Inequalities....................................................... 129 Convergence Theorems........................................................... 133 Continuous-Time (Sub/Super)Martingale ......................... 139 Two Applications of Martingale Theory............................ 140 Supplements and Exercises..................................................... 144 Brownian Motion 147 6.1 6.2 6.3 6.4 6.5 147 149 152 154 154 Brownian Motion.................................................................... The Trajectory Property........................................................ Martingale Property of Brownian Motion .........................
Multi-Dimensional Brownian Motion.................................. Supplements and Exercises..................................................... Stochastic Integral and Diffusion Processes 7.1 7.2 7.3 7.4 7.5 159 Stochastic Integral................................................................. 159 Itô’s Formula.......................................................................... 163 Stochastic Differential Equation (SDE) (Dimension One) . 165 One-Dimensional Diffusion Process..................................... 168 Supplements and Exercises..................................................... 174
8. CONTENTS xiii Semimartingale and Stochastic Integral 179 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 179 182 185 186 189 193 195 197 Uniqueness of Doob-Meyer Decomposition......................... Existence of Doob-Meyer Decomposition............................ Properties of Variation Processes........................................ Stochastic Integral................................................................. Itô’s Formula.......................................................................... Local Martingale and Semimartingale ............................... Multivariate Stochastic Integral........................................... Stochastic Differential Equation (Multidimension)............ Feynman-Kac Formula, Random Change of Time, and Girsanov’s Theorem .............................................................. 8.10 Supplements and Exercises.................................................... 201 213 Notes 219 Bibliography 223 Index 227
|
any_adam_object | 1 |
author | Chen, Mufa 1947- Mao, Yong-Hua ca. 20./21. Jh |
author_GND | (DE-588)129732095 (DE-588)1247132315 |
author_facet | Chen, Mufa 1947- Mao, Yong-Hua ca. 20./21. Jh |
author_role | aut aut |
author_sort | Chen, Mufa 1947- |
author_variant | m c mc y h m yhm |
building | Verbundindex |
bvnumber | BV045300596 |
classification_rvk | SK 820 QH 237 |
classification_tum | MAT 605 |
ctrlnum | (OCoLC)1261744016 (DE-599)BVBBV045300596 |
discipline | Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02033nam a2200445 cb4500</leader><controlfield tag="001">BV045300596</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231101 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">181121s2021 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814740302</subfield><subfield code="c">hc</subfield><subfield code="9">978-981-4740-30-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1261744016</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045300596</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 237</subfield><subfield code="0">(DE-625)141552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60J10</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 605</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60G05</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Mufa</subfield><subfield code="d">1947-</subfield><subfield code="0">(DE-588)129732095</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to stochastic processes</subfield><subfield code="c">Mu-Fa Chen ; Yong-Hua Mao ; Beijing Normal University, China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 230 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">World Scientific series on probability theory and its applications</subfield><subfield code="v">Volume 2</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mao, Yong-Hua</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1247132315</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-981-4740-31-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">World Scientific series on probability theory and its applications</subfield><subfield code="v">Volume 2</subfield><subfield code="w">(DE-604)BV042764310</subfield><subfield code="9">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030687745&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030687745</subfield></datafield></record></collection> |
id | DE-604.BV045300596 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:14:15Z |
institution | BVB |
isbn | 9789814740302 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030687745 |
oclc_num | 1261744016 |
open_access_boolean | |
owner | DE-703 DE-739 DE-945 DE-N2 DE-91G DE-BY-TUM DE-83 |
owner_facet | DE-703 DE-739 DE-945 DE-N2 DE-91G DE-BY-TUM DE-83 |
physical | xiii, 230 Seiten Diagramme |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | World Scientific |
record_format | marc |
series | World Scientific series on probability theory and its applications |
series2 | World Scientific series on probability theory and its applications |
spelling | Chen, Mufa 1947- (DE-588)129732095 aut Introduction to stochastic processes Mu-Fa Chen ; Yong-Hua Mao ; Beijing Normal University, China New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo World Scientific [2021] © 2021 xiii, 230 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier World Scientific series on probability theory and its applications Volume 2 Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Stochastische Analysis (DE-588)4132272-1 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 s Stochastische Analysis (DE-588)4132272-1 s DE-604 Mao, Yong-Hua ca. 20./21. Jh. (DE-588)1247132315 aut Erscheint auch als Online-Ausgabe 978-981-4740-31-9 World Scientific series on probability theory and its applications Volume 2 (DE-604)BV042764310 2 Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030687745&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Chen, Mufa 1947- Mao, Yong-Hua ca. 20./21. Jh Introduction to stochastic processes World Scientific series on probability theory and its applications Stochastischer Prozess (DE-588)4057630-9 gnd Stochastische Analysis (DE-588)4132272-1 gnd |
subject_GND | (DE-588)4057630-9 (DE-588)4132272-1 |
title | Introduction to stochastic processes |
title_auth | Introduction to stochastic processes |
title_exact_search | Introduction to stochastic processes |
title_full | Introduction to stochastic processes Mu-Fa Chen ; Yong-Hua Mao ; Beijing Normal University, China |
title_fullStr | Introduction to stochastic processes Mu-Fa Chen ; Yong-Hua Mao ; Beijing Normal University, China |
title_full_unstemmed | Introduction to stochastic processes Mu-Fa Chen ; Yong-Hua Mao ; Beijing Normal University, China |
title_short | Introduction to stochastic processes |
title_sort | introduction to stochastic processes |
topic | Stochastischer Prozess (DE-588)4057630-9 gnd Stochastische Analysis (DE-588)4132272-1 gnd |
topic_facet | Stochastischer Prozess Stochastische Analysis |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030687745&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV042764310 |
work_keys_str_mv | AT chenmufa introductiontostochasticprocesses AT maoyonghua introductiontostochasticprocesses |