Waves and boundary problems:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
De Gruyter
[2018]
|
Schriftenreihe: | Nonlinear equations with small parameter / Sergey G. Glebov
Volume 2 De Gruyter series in nonlinear analysis and applications Volume 23/2 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | XVIII, 422 Seiten Illustrationen 25 cm, 865 g |
ISBN: | 9783110533835 3110533839 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV045296696 | ||
003 | DE-604 | ||
005 | 20210526 | ||
007 | t | ||
008 | 181119s2018 gw a||| |||| 00||| eng d | ||
015 | |a 16,N50 |2 dnb | ||
015 | |a 18,A27 |2 dnb | ||
016 | 7 | |a 1121019188 |2 DE-101 | |
020 | |a 9783110533835 |c Festeinband : EUR 119.95 (DE) (freier Preis), EUR 121.00 (AT) (freier Preis) |9 978-3-11-053383-5 | ||
020 | |a 3110533839 |9 3-11-053383-9 | ||
024 | 3 | |a 9783110533835 | |
035 | |a (OCoLC)1043869696 | ||
035 | |a (DE-599)DNB1121019188 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-20 | ||
082 | 0 | |a 515.353 |2 23/ger | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Glebov, Sergej G. |e Verfasser |0 (DE-588)1132829518 |4 aut | |
245 | 1 | 0 | |a Waves and boundary problems |c Sergey G. Glebov, Oleg M. Kiselev, Nikolai N. Tarkhanov |
264 | 1 | |a Berlin |b De Gruyter |c [2018] | |
300 | |a XVIII, 422 Seiten |b Illustrationen |c 25 cm, 865 g | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Nonlinear equations with small parameter / Sergey G. Glebov |v Volume 2 | |
490 | 0 | |a De Gruyter series in nonlinear analysis and applications |v Volume 23/2 | |
650 | 0 | 7 | |a Nichtlineare Gleichung |0 (DE-588)4455337-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotik |0 (DE-588)4126634-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare partielle Differentialgleichung |0 (DE-588)4128900-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare partielle Differentialgleichung |0 (DE-588)4128900-6 |D s |
689 | 0 | 1 | |a Asymptotik |0 (DE-588)4126634-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Nichtlineare Gleichung |0 (DE-588)4455337-7 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Kiselev, Oleg Michajlovič |e Verfasser |0 (DE-588)1132830591 |4 aut | |
700 | 1 | |a Tarchanov, Nikolaj Nikolaevič |d 1955-2020 |e Verfasser |0 (DE-588)121160521 |4 aut | |
710 | 2 | |a Walter de Gruyter GmbH & Co. KG |0 (DE-588)10095502-2 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |z 9783110534986 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 9783110534979 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 9783110533903 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |t Waves and Boundary Problems |b 1. Auflage |d Berlin/Boston : De Gruyter, 2018 |h Online-Ressource, 441 Seiten |
810 | 2 | |a Sergey G. Glebov |t Nonlinear equations with small parameter |v Volume 2 |w (DE-604)BV005530011 |9 23,2 | |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u http://d-nb.info/1121019188/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030683930&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030683930 |
Datensatz im Suchindex
_version_ | 1804179078353256448 |
---|---|
adam_text | CONTENTS
PREFACE * VII
INTRODUCTION * XV
1 THE SOLITARY WAVES GENERATION DUE TO PASSAGE THROUGH THE LOCAL
RESONANCE * 1
1.1 THE NONLINEAR SCHROEDINGER EQUATION. SCATTERING OF SOLITONS
ON RESONANCE * 1
1.1.1 PROBLEM STATEMENT AND RESULT* 3
1.1.2 INCIDENT WAVES * 4
1.1.3 SCATTERING * 6
1.1.4 SCATTERED WAVES * 8
1.1.5 NUMERICAL JUSTIFICATION OF ASYMPTOTIC ANALYSIS * 10
1.2 GENERATION OF SOLITARY PACKETS OF WAVES IN THE NONLINEAR
KLEIN-GORDON
EQUATION * 11
1.2.1 MAIN RESULT* 11
1.2.2 PRE-RESONANCE EXPANSION * 14
1.2.3 INTERNAL ASYMPTOTICS * 16
1.2.4 POST-RESONANCE EXPANSION * 23
1.3 THE PERTURBED KDV EQUATION AND PASSAGE THROUGH THE RESONANCE * 28
1.3.1 FORCED OSCILLATIONS * 29
1.3.2 INSIDE THE RESONANCE * 31
1.3.3 POST-RESONANCE EXPANSION * 37
1.3.4 NUMERICAL SIMULATIONS * 39
1.4 AUTO-RESONANT SOLITON AND PERTURBATION
WITH DECAYING AMPLITUDE * 40
1.4.1 JUSTIFICATION
-----
41
1.4.2 DERIVATION OF THE MODEL EQUATION FOR AUTO-RESONANCE * 42
1.4.3 AN ASYMPTOTIC SOLUTION OF THE MODEL EQUATION * 43
1.4.4 EFFECT OF DISSIPATION * 46
2 REGULAR PERTURBATION OF ILL-POSED PROBLEMS * 48
2.1 MIXED PROBLEMS WITH A PARAMETER * 49
2.1.1 PRELIMINARIES * 49
2.1.2 THE CAUCHY PROBLEM * 53
2.1.3 A PERTURBATION * 58
2.1.4 THE MAIN THEOREM * 62
2.1.5 THE WELL-POSED CASE * 65
2.1.6 ON FINDING THE SOLUTION * 67
2.1.7 DIRAC OPERATORS * 72
2.2 KERNEL SPIKES OF SINGULAR PROBLEMS * 76
2.2.1 SOFT EXPANSIONS
-----
77
2.2.2 HARMONIC EXTENSION * 79
2.2.3 AUXILIARY RESULTS * 80
2.2.4 FORMULAS FOR COEFFICIENTS * 81
2.2.5 LAURENT SERIES
-----
84
2.2.6 EXPANSION OF THE POISSON KERNEL * 85
2.3 AN ASYMPTOTIC EXPANSION OF THE MARTINELLI-BOCHNER INTEGRAL * 86
2.3.1 ASYMPTOTIC EXPANSION * 87
2.3.2 THE BOCHNER-MARTINELLI INTEGRAL
-----
88
2.3.3 REGULARIZATION * 94
2.3.4 PROOF OF THE THEOREM * 95
2.4 A FORMULA FOR THE NUMBER OF LATTICE POINTS IN A DOMAIN * 97
2.4.1 LOGARITHMIC RESIDUE FORMULA * 97
2.4.2 THE INTEGRAL FORMULA * 98
2.4.3 THE ONE-DIMENSIONAL CASE * 101
2.4.4 SOME COMMENTS * 102
3 ASYMPTOTICS AT CHARACTERISTIC POINTS * 103
3.1 ASYMPTOTIC SOLUTIONS OF THE ID HEAT EQUATION * 103
3.1.1 PRELIMINARIES * 103
3.1.2 ON THE HEAT EQUATION * 104
3.1.3 BLOW-UP TECHNIQUES * 106
3.1.4 FURTHER REDUCTION * 109
3.1.5 THE UNPERTURBED PROBLEM * 111
3.1.6 ASYMPTOTIC SOLUTIONS * 113
3.1.7 LOCAL SOLVABILITY AT A CUSP * 117
3.2 EULER THEORY ON A SPINDLE * 119
3.2.1 PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS WITH CONICAL POINTS *
120
3.2.2 MEROMORPHIC FAMILIES * 122
3.2.3 CHARACTERISTIC VALUES
-----
123
3.2.4 FACTORIZATION
-----
126
3.2.5 RESOLVENT
-----
129
3.2.6 UNITARY REDUCTION * 130
3.2.7 INHOMOGENEOUS EQUATION * 133
3.2.8 TRANSPOSED EQUATIONS * 140
3.2.9 INDEX
-----
143
3.3 THE LAPLACE-BELTRAMI OPERATOR ON A ROTATIONALLY
SYMMETRIC SURFACE * 145
3.3.1 CALCULUS ON SINGULAR VARIETIES * 145
3.3.2 GEOMETRY * 146
3.3.3 LAPLACE-BELTRAMI OPERATOR * 148
3.3.4 WEIGHTED SPACES * 149
3.3.5 RESOLVENT * 151
3.3.6 FREDHOLM THEORY * 153
3.3.7 ASYMPTOTICS
-----
155
3.3.8 INDEX FORMULA * 156
3.4 BOUNDARY VALUE PROBLEMS FOR PARABOLIC EQUATIONS * 158
3.4.1 ANISOTROPIC ELLIPTICITY * 161
3.4.2 PARABOLICITY AFTER PETROVSKII * 162
3.4.3 CHARACTERISTIC POINTS * 163
3.4.4 WEIGHTED SPACES * 166
3.4.5 SOLUTION IN A SPECIAL DOMAIN * 174
3.4.6 LOCAL PARAMETRICES * 182
3.4.7 THE GLOBAL PARAMETRIX * 192
3.4.8 REGULARITY OF SOLUTIONS * 206
3.4.9 SOME PARTICULAR CASES * 210
4 ASYMPTOTIC EXPANSIONS OF SINGULAR PERTURBATION THEORY * 214
4.1 SMALL RANDOM PERTURBATIONS OF DYNAMICAL SYSTEMS * 214
4.1.1 WHITE NOISE PERTURBATION OF DYNAMICAL SYSTEMS * 214
4.1.2 THE CASE OF THE HOMOGENEOUS DIFFERENTIAL EQUATION * 216
4.1.3 THE CASE OF THE HOMOGENEOUS BOUNDARY CONDITION * 220
4.1.4 THE CASE OF A RIGHT-HAND SIDE OF ZERO AVERAGE VALUE * 222
4.1.5 CONCLUSION
-----
222
4.1.6 APPENDIX
-----
223
4.2 FORMAL ASYMPTOTIC SOLUTIONS
------
225
4.2.1 ASYMPTOTIC PHENOMENA * 225
4.2.2 BLOW-UP TECHNIQUES
-----
228
4.2.3 FORMAL ASYMPTOTIC SOLUTION * 230
4.2.4 THE EXCEPTIONAL CASE
P = 2
* 233
4.2.5 DEGENERATE PROBLEM * 235
4.2.6 GENERALIZATION TO HIGHER DIMENSIONS * 235
4.2.7 PARAMETER-DEPENDENT NORMS * 240
4.3 THE SHAPIRO-LOPATINSKII CONDITION * 241
4.3.1 BOUNDARY VALUE PROBLEMS WITH SMALL PARAMETER * 241
4.3.2 ASYMPTOTIC EXPANSION * 242
4.3.3 THE MAIN SPACES * 245
4.3.4 AUXILIARY RESULTS
-----
249
4.3.5 THE MAIN RESULT
-----
251
4.3.6 LOCAL ESTIMATES IN THE INTERIOR* 253
4.3.7 THE CASE OF BOUNDARY POINTS * 255
4.3.8 CONCLUSION
-----
257
4.4 PSEUDODIFFERENTIAL CALCULUS WITH A SMALL PARAMETER * 257
4.4.1 SINGULAR PROBLEMS WITH A SMALL PARAMETER * 257
4.4.2 LOSS OF INITIAL DATA
-----
258
4.4.3 A PASSIVE APPROACH TO OPERATOR-VALUED SYMBOLS * 260
4.4.4 OPERATORS WITH A SMALL PARAMETER * 264
4.4.5 ELLIPTICITY WITH A LARGE PARAMETER * 269
4.4.6 ANOTHER APPROACH TO PARAMETER-DEPENDENT THEORY * 269
4.4.7 REGULARIZATION OF SINGULARLY PERTURBED PROBLEMS * 275
5 ASYMPTOTIC SOLUTION OF THE SCHROEDINGER EQUATION * 278
5.1 SEMICLASSICAL APPROXIMATIONS OF QUANTUM MECHANICS * 278
5.1.1 STANDARD APPROXIMATION * 278
5.1.2 PRELIMINARY RESULTS * 280
5.1.3 THE SCHROEDINGER EQUATION FOR QUADRATIC HAMILTONIANS * 281
5.1.4 EXACT SOLUTION WITH A RAPIDLY DECREASING INITIAL SYMBOL * 282
5.1.5 SYMMETRIZED GENERATING FUNCTION * 285
5.2 ASYMPTOTIC SOLUTION OF THE SCHROEDINGER EQUATION * 286
5.2.1 SYMBOL CLASSES * 286
5.2.2 CONSTRUCTION OF A FORMAL EXPANSION * 288
5.2.3 ASYMPTOTIC SOLUTION * 289
5.2.4 ONE MORE ASYMPTOTIC DECOMPOSITION * 291
5.3 THE TRACE OF THE SCHROEDINGER OPERATOR * 292
5.3.1 ANTI-WICK SYMBOLS * 292
5.3.2 THE TRACE FORMULA * 293
5.3.3 TRACE ASYMPTOTICS FOR
H
- 0 * 293
5.3.4 A LEFSCHETZ FIXED POINT FORMULA * 294
5.4 QUANTUM DYNAMICS IN THE FERMI-PASTA-ULAM PROBLEM * 295
5.4.1 WAVE DECAY PROCESSES * 296
5.4.2 CLASSICAL LIMIT * 297
5.4.3 QUANTUM EQUATIONS OF DECAY * 299
5.4.4 ANALYSIS OF QUANTUM EQUATIONS * 302
5.4.5 EXISTENCE OF SOLUTIONS * 303
5.4.6 SUCCESSIVE APPROXIMATIONS * 307
5.4.7 ASYMPTOTIC UNDER LARGE TIME * 313
5.4.8 CONCLUSION * 314
6 THE KELVIN-HELMHOLTZ INSTABILITY * 316
6.1 DERIVATION OF THE FUNDAMENTAL EQUATION * 318
6.1.1 SETTING OF THE PROBLEM * 318
6.1.2 CONDITIONS ON THE UNKNOWN BOUNDARY * 319
6.1.3 DERIVATION OF AN EQUATION FOR THE CURVE
-----
320
6.1.4 A HAMILTONIAN FORM OF THE EQUATION OF TANGENTIAL DISCONTINUITY
-----
322
6.1.5 CONSERVATION LAWS * 323
6.2 SMALL PERTURBATION OF TANGENTIAL DISCONTINUITY * 324
6.2.1 LINEARIZATION OF THE EQUATION OF TANGENTIAL DISCONTINUITY * 324
6.2.2 ON THE ELLIPTICITY OF THE SYSTEM (6.18) * 326
6.2.3 SMALL PERTURBATIONS OF RECTILINEAR TANGENTIAL DISCONTINUITY * 327
6.2.4 THE LINEARIZATION OF EQUATION (6.17) * 328
6.2.5 REMARKS ON THE LINEARIZED SYSTEM * 329
6.3 ANALYTIC CONTINUATION FROM A BOUNDARY SUBSET * 331
6.3.1 THE RIEMANN MAPPING THEOREM * 333
6.3.2 HARDY SPACES * 334
6.3.3 THE CAUCHY FORMULA * 335
6.3.4 QUENCHING FUNCTIONS * 336
6.3.5 THE GOLUZIN-KRYLOV FORMULA * 338
6.3.6 A UNIQUENESS THEOREM * 339
6.3.7 APPROXIMATION THROUGH HOLOMORPHIC FUNCTIONS * 340
6.3.8 EXPANSION IN A FOURIER SERIES * 341
6.3.9 APPROXIMATION THROUGH LEGENDRE POLYNOMIALS * 343
6.4 A NUMERICAL APPROACH TO THE RIEMANN HYPOTHESIS * 344
6.4.1 THE RIEMANN ZETA FUNCTION * 345
6.4.2 ANALYTIC CONTINUATION IN A LUNE * 346
6.4.3 A CARLEMAN FORMULA FOR A HALF-DISK * 349
6.4.4 REDUCTION OF THE RIEMANN HYPOTHESIS * 352
6.4.5 NUMERICAL EXPERIMENTS * 355
7 NONLINEAR CAUCHY PROBLEMS FOR ELLIPTIC EQUATIONS * 357
7.1 A VARIATIONAL APPROACH TO THE CAUCHY PROBLEM * 357
7.1.1 RELAXATIONS OF ILL-POSED PROBLEMS * 357
7.1.2 THE CAUCHY PROBLEM * 359
7.1.3 VARIATIONAL SETTING * 361
7.1.4 EULER*S EQUATIONS * 364
7.1.5 EXAMPLES * 366
7.1.6 MIXED PROBLEMS * 367
7.1.7 INVERSE PROBLEM APPROACH * 369
7.2 THE CAUCHY PROBLEM FOR CHAPLYGIN*S SYSTEM * 371
7.2.1 PRELIMINARIES * 371
7.2.2 CHAPLYGIN*S SYSTEM * 372
7.2.3 VARIATIONAL SETTING* 373
7.2.4 EXISTENCE OF SOLUTIONS
-----
375
7.2.5 STABLE CAUCHY PROBLEMS * 377
7.2.6 APPROXIMATE SOLUTIONS * 379
7.3 HYPERBOLIC FORMULAS IN ELLIPTIC CAUCHY PROBLEMS * 380
7.3.1 THE CAUCHY PROBLEM * 384
7.3.2 HYPERBOLIC REDUCTION * 385
7.3.3 THE PLANAR CASE * 387
7.3.4 THE CARLEMAN FORMULA * 389
7.3.5 POISSON*S FORMULA
-----
391
7.3.6 THE KIRCHHOFF FORMULA * 393
7.3.7 CONCLUDING REMARKS * 395
7.4 A WKB SOLUTION TO THE NAVIER-STOKES EQUATIONS * 396
7.4.1 BASIC EQUATIONS OF THE DYNAMICS OF AN INCOMPRESSIBLE VISCOUS
FLUID
-----
396
7.4.2 GENERALIZED NAVIER-STOKES EQUATIONS * 398
7.4.3 ENERGY ESTIMATES
-----
401
7.4.4 FIRST STEPS TOWARDS THE SOLUTION * 403
7.4.5 A WKB SOLUTION
-----
405
BIBLIOGRAPHY * 407
INDEX
-----
421
|
any_adam_object | 1 |
author | Glebov, Sergej G. Kiselev, Oleg Michajlovič Tarchanov, Nikolaj Nikolaevič 1955-2020 |
author_GND | (DE-588)1132829518 (DE-588)1132830591 (DE-588)121160521 |
author_facet | Glebov, Sergej G. Kiselev, Oleg Michajlovič Tarchanov, Nikolaj Nikolaevič 1955-2020 |
author_role | aut aut aut |
author_sort | Glebov, Sergej G. |
author_variant | s g g sg sgg o m k om omk n n t nn nnt |
building | Verbundindex |
bvnumber | BV045296696 |
classification_rvk | SK 540 |
ctrlnum | (OCoLC)1043869696 (DE-599)DNB1121019188 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02830nam a2200601 cb4500</leader><controlfield tag="001">BV045296696</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210526 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">181119s2018 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">16,N50</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">18,A27</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1121019188</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110533835</subfield><subfield code="c">Festeinband : EUR 119.95 (DE) (freier Preis), EUR 121.00 (AT) (freier Preis)</subfield><subfield code="9">978-3-11-053383-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110533839</subfield><subfield code="9">3-11-053383-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110533835</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1043869696</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1121019188</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Glebov, Sergej G.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1132829518</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Waves and boundary problems</subfield><subfield code="c">Sergey G. Glebov, Oleg M. Kiselev, Nikolai N. Tarkhanov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 422 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">25 cm, 865 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Nonlinear equations with small parameter / Sergey G. Glebov</subfield><subfield code="v">Volume 2</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter series in nonlinear analysis and applications</subfield><subfield code="v">Volume 23/2</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Gleichung</subfield><subfield code="0">(DE-588)4455337-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4128900-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4128900-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlineare Gleichung</subfield><subfield code="0">(DE-588)4455337-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kiselev, Oleg Michajlovič</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1132830591</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tarchanov, Nikolaj Nikolaevič</subfield><subfield code="d">1955-2020</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121160521</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="0">(DE-588)10095502-2</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="z">9783110534986</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">9783110534979</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">9783110533903</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="t">Waves and Boundary Problems</subfield><subfield code="b">1. Auflage</subfield><subfield code="d">Berlin/Boston : De Gruyter, 2018</subfield><subfield code="h">Online-Ressource, 441 Seiten</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Sergey G. Glebov</subfield><subfield code="t">Nonlinear equations with small parameter</subfield><subfield code="v">Volume 2</subfield><subfield code="w">(DE-604)BV005530011</subfield><subfield code="9">23,2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://d-nb.info/1121019188/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030683930&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030683930</subfield></datafield></record></collection> |
id | DE-604.BV045296696 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:14:09Z |
institution | BVB |
institution_GND | (DE-588)10095502-2 |
isbn | 9783110533835 3110533839 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030683930 |
oclc_num | 1043869696 |
open_access_boolean | |
owner | DE-20 |
owner_facet | DE-20 |
physical | XVIII, 422 Seiten Illustrationen 25 cm, 865 g |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | De Gruyter |
record_format | marc |
series2 | Nonlinear equations with small parameter / Sergey G. Glebov De Gruyter series in nonlinear analysis and applications |
spelling | Glebov, Sergej G. Verfasser (DE-588)1132829518 aut Waves and boundary problems Sergey G. Glebov, Oleg M. Kiselev, Nikolai N. Tarkhanov Berlin De Gruyter [2018] XVIII, 422 Seiten Illustrationen 25 cm, 865 g txt rdacontent n rdamedia nc rdacarrier Nonlinear equations with small parameter / Sergey G. Glebov Volume 2 De Gruyter series in nonlinear analysis and applications Volume 23/2 Nichtlineare Gleichung (DE-588)4455337-7 gnd rswk-swf Asymptotik (DE-588)4126634-1 gnd rswk-swf Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd rswk-swf Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 s Asymptotik (DE-588)4126634-1 s DE-604 Nichtlineare Gleichung (DE-588)4455337-7 s Kiselev, Oleg Michajlovič Verfasser (DE-588)1132830591 aut Tarchanov, Nikolaj Nikolaevič 1955-2020 Verfasser (DE-588)121160521 aut Walter de Gruyter GmbH & Co. KG (DE-588)10095502-2 pbl Erscheint auch als 9783110534986 Erscheint auch als Online-Ausgabe 9783110534979 Erscheint auch als Online-Ausgabe 9783110533903 Erscheint auch als Online-Ausgabe Waves and Boundary Problems 1. Auflage Berlin/Boston : De Gruyter, 2018 Online-Ressource, 441 Seiten Sergey G. Glebov Nonlinear equations with small parameter Volume 2 (DE-604)BV005530011 23,2 B:DE-101 application/pdf http://d-nb.info/1121019188/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030683930&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Glebov, Sergej G. Kiselev, Oleg Michajlovič Tarchanov, Nikolaj Nikolaevič 1955-2020 Waves and boundary problems Nichtlineare Gleichung (DE-588)4455337-7 gnd Asymptotik (DE-588)4126634-1 gnd Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd |
subject_GND | (DE-588)4455337-7 (DE-588)4126634-1 (DE-588)4128900-6 |
title | Waves and boundary problems |
title_auth | Waves and boundary problems |
title_exact_search | Waves and boundary problems |
title_full | Waves and boundary problems Sergey G. Glebov, Oleg M. Kiselev, Nikolai N. Tarkhanov |
title_fullStr | Waves and boundary problems Sergey G. Glebov, Oleg M. Kiselev, Nikolai N. Tarkhanov |
title_full_unstemmed | Waves and boundary problems Sergey G. Glebov, Oleg M. Kiselev, Nikolai N. Tarkhanov |
title_short | Waves and boundary problems |
title_sort | waves and boundary problems |
topic | Nichtlineare Gleichung (DE-588)4455337-7 gnd Asymptotik (DE-588)4126634-1 gnd Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd |
topic_facet | Nichtlineare Gleichung Asymptotik Nichtlineare partielle Differentialgleichung |
url | http://d-nb.info/1121019188/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030683930&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV005530011 |
work_keys_str_mv | AT glebovsergejg wavesandboundaryproblems AT kiselevolegmichajlovic wavesandboundaryproblems AT tarchanovnikolajnikolaevic wavesandboundaryproblems AT walterdegruytergmbhcokg wavesandboundaryproblems |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis