Periodic locally compact groups: a study of a class of totally disconnected topological groups
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2019]
|
Schriftenreihe: | De Gruyter studies in mathematics
Volume 71 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | LIII, 301 Seiten Illustrationen |
ISBN: | 9783110598476 3110598477 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV045284026 | ||
003 | DE-604 | ||
005 | 20221123 | ||
007 | t | ||
008 | 181113s2019 gw a||| |||| 00||| eng d | ||
015 | |a 18,N12 |2 dnb | ||
016 | 7 | |a 1154612597 |2 DE-101 | |
020 | |a 9783110598476 |c hbk. |9 978-3-11-059847-6 | ||
020 | |a 3110598477 |9 3-11-059847-7 | ||
035 | |a (OCoLC)1077591286 | ||
035 | |a (DE-599)DNB1154612597 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-20 |a DE-29T |a DE-11 |a DE-188 | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Herfort, Wolfgang |e Verfasser |0 (DE-588)136125514 |4 aut | |
245 | 1 | 0 | |a Periodic locally compact groups |b a study of a class of totally disconnected topological groups |c Wolfgang Herfort, Karl H. Hofmann, and Francesco G. Russo |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a LIII, 301 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a De Gruyter studies in mathematics |v Volume 71 | |
650 | 0 | 7 | |a Lokal kompakte Gruppe |0 (DE-588)4168094-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologische Gruppe |0 (DE-588)4135793-0 |2 gnd |9 rswk-swf |
653 | |a Gruppentheorie | ||
653 | |a Lokal kompakte Gruppe | ||
653 | |a Topologische Gruppe | ||
689 | 0 | 0 | |a Lokal kompakte Gruppe |0 (DE-588)4168094-7 |D s |
689 | 0 | 1 | |a Topologische Gruppe |0 (DE-588)4135793-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Hofmann, Karl H. |d 1932- |e Verfasser |0 (DE-588)115780734 |4 aut | |
700 | 1 | |a Russo, Francesco G. |e Verfasser |0 (DE-588)1156790948 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-059908-4 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-059919-0 |
830 | 0 | |a De Gruyter studies in mathematics |v Volume 71 |w (DE-604)BV000005407 |9 71 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030671500&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030671500 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804179060248543232 |
---|---|
adam_text | CONTENTS
PREFACE* VII
OVERVIEW* XV
PART I:
BACKGROUND INFORMATION ON LOCALLY COMPACT GROUPS
INTRODUCTION * 3
1 LOCALLY COMPACT SPACES AND GROUPS
* 5
1.1 THE PRESENCE OF MANY COMPACT OPEN SUBGROUPS * 5
1.2 THE HYPERSPACE OF CLOSED SUBGROUPS
SUB{G) OF 6 * 9
1.2.1 THE CHABAUTY SPACE OF A COMPACTLY RULED GROUP * 11
1.3 SEMIDIRECT PRODUCTS * 13
2 PERIODIC LOCALLY COMPACT GROUPS AND THEIR SYLOW THEORY * 19
2.1 NORMAL O-SUBGROUPS* 22
2.2 NORMAL O-SYLOW SUBGROUPS * 25
2.3 A SCHUR-ZASSENHAUS THEOREM * 26
2.4 THE FIXED POINT THEOREM *
33
2.5 PAIRWISE COMMUTINGP-SYLOW SUBGROUPS * 38
2.6 SYLOW BASES IN INDUCTIVELY PROSOLVABLE GROUPS * 43
3 ABELIAN PERIODIC GROUPS
* 47
3.1 BRACONNIER S THEOREM * 47
3.2 PRELIMINARIES ABOUT THE P RANK * 50
3.3 LOCALLY COMPACT ABELIAN TORSION GROUPS * 52
3.3.1 A NONSPLIT EXTENSION OF A REDUCED LOCALLY COMPACT ABELIAN P-GROUP
BY
Q P
-----
55
3.4 PURITY USED PARTIALLY * 67
3.5 LOCALLY COMPACT ABELIAN DIVISIBLE GROUPS * 69
3.6 TORSION-FREENESS AND DIVISIBILITY IN P-GROUPS * 72
3.6.1 SPLITTING IN TORSION-FREE P-GROUPS * 78
3.6.2 THE LARGEST DIVISIBLE SUBGROUP * 79
3.7 DENSE DIVISIBLE SUBGROUPS * 83
3.8 NONSPLITTING OF QP IN THE PRESENCE OF TORSION * 86
3.9 DIVISIBLE TORSION GROUPS * 91
3.10 THE P RANK OF A LOCALLY COMPACT ABELIAN P-GROUP * 93
3.11 STRUCTURE OF LOCALLY COMPACT P-GROUPS OF FINITE P RANK * 96
4 SCALAR AUTOMORPHISMS AND THE MASTERGRAPH * 101
4.1 ON SCALAR AUTOMORPHISMS * 103
4.1.1 THE STRUCTURE OF ZP FOR P * 2 * 105
4.1.2 THE STRUCTURE OF Z 2* 108
4.2 THE STRUCTURE OF THE GROUP OF SCALAR AUTOMORPHISMS * 110
4.3 A BIPARTITE GRAPH FOR SCALAR ACTION ON A PERIODIC LOCALLY COMPACT
ABELIAN
GROUP * 114
4.3.1 GEOMETRIC PROPERTIES OF THE MASTERGRAPH * 115
4.3.2 THE STRUCTURE OF Z X AND THE PRIME MASTERGRAPH * 116
4.3.3 THE SYLOW DECOMPOSITION O FZ (N )X INDEXED BY Q * 118
4.3.4 THE STRUCTURE OF SAUT(A) AND ITS PRIME GRAPH Q(A) * 119
4.3.5 THE STRUCTURE OF A SCALAR ACTION AND ITS PRIME GRAPH * 121
5 INDUCTIVELY MONOTHETIC GROUPS * 127
5.1 CLASSIFYING INDUCTIVELY MONOTHETIC SUBGROUPS * 128
5.1.1 THE BUILD-UP OF N-PROCYCLIC GROUPS FROM OPEN PROCYCLIC
SUBGROUPS * 130
5.1.2 INDUCTIVELY MONOTHETIC GROUPS AND DIVISIBILITY * 131
5.2 THE SUBSPACE OF INDUCTIVELY MONOTHETIC SUBGROUPS * 137
5.3 ON DIVISIBILITY AND Z P * 138
5.4 THE EXTENSIONS OF A LOCALLY COMPACT GROUP BY A N-PROCYCLIC GROUP *
139
PART II:
NEAR ABELIAN GROUPS
INTRODUCTION * 149
6 THE DEFINITION OF NEAR ABELIAN GROUPS * 151
6.1 BASIC DEFINITIONS * 151
7 IMPORTANT CONSEQUENCES OF THE DEFINITIONS * 157
7.1 PERIODICITY OF NEAR ABELIAN GROUPS * 157
7.2 NEAR ABELIAN P-GROUPS * 159
7.3 NONTRIVIAL NEAR ABELIAN GROUPS * 160
7.4 A FIRST GLANCE AT THE SYLOW THEORY OF PERIODIC NEAR ABELIAN GROUPS *
163
7.5 THE EXISTENCE OF SCALING SUBGROUPS * 167
7.6 SINGULAR NEAR ABELIAN GROUPS * 176
8 TRIVIAL NEAR ABELIAN GROUPS * 179
8.1 THE SUBSET 6(G) IN A TRIVIAL NEAR ABELIAN GROUP * 182
8.2 GENERAL STRUCTURE OF TRIVIAL NEAR ABELIAN GROUPS * 186
9 THE CLASS OF NEAR ABELIAN GROUPS
* 191
9.1 CLOSED SUBGROUPS * 191
9.2 QUOTIENT GROUPS
-----
193
9.3 PROJECTIVE LIMITS * 194
9.4 INDUCTIVE LIMITS * 196
10 THE SYLOW STRUCTURE OF PERIODIC NONTRIVIAL NEAR ABELIAN GROUPS AND
THEIR
PRIME GRAPHS
* 203
10.1 MORE ON THE SYLOW STRUCTURE OF C6(A) * 212
10.2 DESCRIBING GD FOR A PERIODIC A-NONTRIVIAL NEAR ABELIAN GROUP * 216
10.3 THE ALGEBRAIC COMMUTATOR GROUP OF A PERIODIC NEAR ABELIAN
GROUP * 217
11 A LIST OF EXAMPLES
* 219
PART III:
APPLICATIONS
INTRODUCTION * 227
12 CLASSIFYING TOPOLOGICALLY QUASIHAMILTONIAN GROUPS * 229
12.1 GENERALITIES * 229
12.2 THE P-GROUP CASE * 231
12.3 THE PERIODIC CASE * 233
12.4 THE NONPERIODIC CASE * 235
13 LOCALLY COMPACT GROUPS WITH A MODULAR SUBGROUP LATTICE * 241
13.1 GENERALITIES * 241
13.2 THE P-GROUP CASE * 245
13.2.1 ABELIAN P-GROUPS * 245
13.2.2 NONPERIODIC LOCALLY COMPACT ABELIAN GROUPS * 249
13.3 IWASAWA (P, Q)-FACTORS * 249
13.4 THE PERIODIC CASE * 252
13.5 A SUMMARY OF PERIODIC LOCALLY COMPACT TOPOLOGICAL /W-GROUPS * 257
13.6 THE NONPERIODIC CASE * 259
14 STRONGLY TOPOLOGICALLY QUASIHAMILTONIAN GROUPS * 263
14.1 HISTORICAL BACKGROUND * 263
14.2 MORE NOTATION * 264
14.3 GENERALITIES * 264
14.4 THE ABELIAN CASE * 265
14.4.1 THE ABELIAN P-GROUP CASE * 266
14.4.2 CLASSIFYING PERIODIC ABELIAN GROUPS
14.5 THE NONABELIAN SITUATION * 274
14.5.1 THE PERIODIC CASE * 274
14.5.2 THE NONPERIODIC CASE * 283
BIBLIOGRAPHY * 289
LIST OF SYMBOLS * 295
INDEX * 297
|
any_adam_object | 1 |
author | Herfort, Wolfgang Hofmann, Karl H. 1932- Russo, Francesco G. |
author_GND | (DE-588)136125514 (DE-588)115780734 (DE-588)1156790948 |
author_facet | Herfort, Wolfgang Hofmann, Karl H. 1932- Russo, Francesco G. |
author_role | aut aut aut |
author_sort | Herfort, Wolfgang |
author_variant | w h wh k h h kh khh f g r fg fgr |
building | Verbundindex |
bvnumber | BV045284026 |
classification_rvk | SK 260 |
ctrlnum | (OCoLC)1077591286 (DE-599)DNB1154612597 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02272nam a2200529 cb4500</leader><controlfield tag="001">BV045284026</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221123 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">181113s2019 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">18,N12</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1154612597</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110598476</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-3-11-059847-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110598477</subfield><subfield code="9">3-11-059847-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1077591286</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1154612597</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Herfort, Wolfgang</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136125514</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Periodic locally compact groups</subfield><subfield code="b">a study of a class of totally disconnected topological groups</subfield><subfield code="c">Wolfgang Herfort, Karl H. Hofmann, and Francesco G. Russo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">LIII, 301 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter studies in mathematics</subfield><subfield code="v">Volume 71</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lokal kompakte Gruppe</subfield><subfield code="0">(DE-588)4168094-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Gruppe</subfield><subfield code="0">(DE-588)4135793-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Gruppentheorie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lokal kompakte Gruppe</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Topologische Gruppe</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lokal kompakte Gruppe</subfield><subfield code="0">(DE-588)4168094-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologische Gruppe</subfield><subfield code="0">(DE-588)4135793-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hofmann, Karl H.</subfield><subfield code="d">1932-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115780734</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Russo, Francesco G.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1156790948</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-059908-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-059919-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics</subfield><subfield code="v">Volume 71</subfield><subfield code="w">(DE-604)BV000005407</subfield><subfield code="9">71</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030671500&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030671500</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV045284026 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:13:51Z |
institution | BVB |
isbn | 9783110598476 3110598477 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030671500 |
oclc_num | 1077591286 |
open_access_boolean | |
owner | DE-20 DE-29T DE-11 DE-188 |
owner_facet | DE-20 DE-29T DE-11 DE-188 |
physical | LIII, 301 Seiten Illustrationen |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | De Gruyter |
record_format | marc |
series | De Gruyter studies in mathematics |
series2 | De Gruyter studies in mathematics |
spelling | Herfort, Wolfgang Verfasser (DE-588)136125514 aut Periodic locally compact groups a study of a class of totally disconnected topological groups Wolfgang Herfort, Karl H. Hofmann, and Francesco G. Russo Berlin ; Boston De Gruyter [2019] © 2019 LIII, 301 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier De Gruyter studies in mathematics Volume 71 Lokal kompakte Gruppe (DE-588)4168094-7 gnd rswk-swf Topologische Gruppe (DE-588)4135793-0 gnd rswk-swf Gruppentheorie Lokal kompakte Gruppe Topologische Gruppe Lokal kompakte Gruppe (DE-588)4168094-7 s Topologische Gruppe (DE-588)4135793-0 s 1\p DE-604 Hofmann, Karl H. 1932- Verfasser (DE-588)115780734 aut Russo, Francesco G. Verfasser (DE-588)1156790948 aut Erscheint auch als Online-Ausgabe, EPUB 978-3-11-059908-4 Erscheint auch als Online-Ausgabe, PDF 978-3-11-059919-0 De Gruyter studies in mathematics Volume 71 (DE-604)BV000005407 71 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030671500&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Herfort, Wolfgang Hofmann, Karl H. 1932- Russo, Francesco G. Periodic locally compact groups a study of a class of totally disconnected topological groups De Gruyter studies in mathematics Lokal kompakte Gruppe (DE-588)4168094-7 gnd Topologische Gruppe (DE-588)4135793-0 gnd |
subject_GND | (DE-588)4168094-7 (DE-588)4135793-0 |
title | Periodic locally compact groups a study of a class of totally disconnected topological groups |
title_auth | Periodic locally compact groups a study of a class of totally disconnected topological groups |
title_exact_search | Periodic locally compact groups a study of a class of totally disconnected topological groups |
title_full | Periodic locally compact groups a study of a class of totally disconnected topological groups Wolfgang Herfort, Karl H. Hofmann, and Francesco G. Russo |
title_fullStr | Periodic locally compact groups a study of a class of totally disconnected topological groups Wolfgang Herfort, Karl H. Hofmann, and Francesco G. Russo |
title_full_unstemmed | Periodic locally compact groups a study of a class of totally disconnected topological groups Wolfgang Herfort, Karl H. Hofmann, and Francesco G. Russo |
title_short | Periodic locally compact groups |
title_sort | periodic locally compact groups a study of a class of totally disconnected topological groups |
title_sub | a study of a class of totally disconnected topological groups |
topic | Lokal kompakte Gruppe (DE-588)4168094-7 gnd Topologische Gruppe (DE-588)4135793-0 gnd |
topic_facet | Lokal kompakte Gruppe Topologische Gruppe |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030671500&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000005407 |
work_keys_str_mv | AT herfortwolfgang periodiclocallycompactgroupsastudyofaclassoftotallydisconnectedtopologicalgroups AT hofmannkarlh periodiclocallycompactgroupsastudyofaclassoftotallydisconnectedtopologicalgroups AT russofrancescog periodiclocallycompactgroupsastudyofaclassoftotallydisconnectedtopologicalgroups |