Average-Case Analyse parametrisierter und probabilistischer Algorithmen:
In both Theoretical Computer Science and practical work it is a disappointing outcome if the considered problem is NP complete. There is almost no hope for an efficient algorithm. However, many approaches have been developed to overcome this barrier: - The study of parameterized complexity allows in...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | German |
Veröffentlicht: |
Jena
2017
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | In both Theoretical Computer Science and practical work it is a disappointing outcome if the considered problem is NP complete. There is almost no hope for an efficient algorithm. However, many approaches have been developed to overcome this barrier: - The study of parameterized complexity allows in many cases the concentration of the explosion of the running time in a given parameter. - The behavior of problems not only in the worst case but also in average cases are studied. Or the data to work with is slightly perturbed. Then the concept of a smoothed analysis gives new insides - Also sometimes the use of randomness in the computing process can help to circumvent some obstacles. - And maybe an approximation is also nearly as good as an optimal solution. All these approaches are well studied on its own, but interactions between them, and the use of multiple approaches together, is a mostly unstudied field of research. In this thesis we study a part of these interactions for some test problems. We show that the reduction rules, given by Gramm et al., for the Clique-Cover problem with high probability not only reduce "yes" instances, but solve them entirely. We also consider the paradigm of bounded search trees, which is widely used for parameterizd problems. We find that the expected running time of a simple bounded search tree algorithm is much lower than the worst case bound for FPT problems Vertex-Cover and d-Hitting-Set. For certain sets of parameter values expected FPT running time for the W[1] and W[2] complete problems Clique and Hitting-Set is achieved, too. Furthermore, we study a simple probabilistic generalization of greedy approximation algorithms. For the Vertex-Cover, Hitting-Set, and the Triangle-Vertex-Deletion problem we find that the probabilistic algorithms we give have a substantially smaller expected approximation ratio than their deterministic equivalents. There is also a trade off: With more time one can expect better solutions |
Beschreibung: | 105 Seiten 29,5 cm |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV045275566 | ||
003 | DE-604 | ||
005 | 20191017 | ||
007 | t | ||
008 | 181107s2017 m||| 00||| ger d | ||
035 | |a (OCoLC)988389621 | ||
035 | |a (DE-599)GBV888797311 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a ger | |
049 | |a DE-355 |a DE-703 | ||
084 | |a 54.10 |2 bkl | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Hercher, Christian |d 1985- |e Verfasser |0 (DE-588)1133091458 |4 aut | |
245 | 1 | 0 | |a Average-Case Analyse parametrisierter und probabilistischer Algorithmen |c von Dipl.-Math. Christian Hercher |
264 | 1 | |a Jena |c 2017 | |
300 | |a 105 Seiten |c 29,5 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c Friedrich-Schiller-Universität Jena |d 2017 | ||
520 | 3 | |a In both Theoretical Computer Science and practical work it is a disappointing outcome if the considered problem is NP complete. There is almost no hope for an efficient algorithm. However, many approaches have been developed to overcome this barrier: - The study of parameterized complexity allows in many cases the concentration of the explosion of the running time in a given parameter. - The behavior of problems not only in the worst case but also in average cases are studied. Or the data to work with is slightly perturbed. Then the concept of a smoothed analysis gives new insides - Also sometimes the use of randomness in the computing process can help to circumvent some obstacles. - And maybe an approximation is also nearly as good as an optimal solution. All these approaches are well studied on its own, but interactions between them, and the use of multiple approaches together, is a mostly unstudied field of research. In this thesis we study a part of these interactions for some test problems. We show that the reduction rules, given by Gramm et al., for the Clique-Cover problem with high probability not only reduce "yes" instances, but solve them entirely. We also consider the paradigm of bounded search trees, which is widely used for parameterizd problems. We find that the expected running time of a simple bounded search tree algorithm is much lower than the worst case bound for FPT problems Vertex-Cover and d-Hitting-Set. For certain sets of parameter values expected FPT running time for the W[1] and W[2] complete problems Clique and Hitting-Set is achieved, too. Furthermore, we study a simple probabilistic generalization of greedy approximation algorithms. For the Vertex-Cover, Hitting-Set, and the Triangle-Vertex-Deletion problem we find that the probabilistic algorithms we give have a substantially smaller expected approximation ratio than their deterministic equivalents. There is also a trade off: With more time one can expect better solutions | |
650 | 0 | 7 | |a Komplexitätstheorie |0 (DE-588)4120591-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a NP-vollständiges Problem |0 (DE-588)4138229-8 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a NP-vollständiges Problem |0 (DE-588)4138229-8 |D s |
689 | 0 | 1 | |a Komplexitätstheorie |0 (DE-588)4120591-1 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |t Average-Case Analyse parametrisierter und probabilistischer Algorithmen |
856 | 4 | 2 | |m V:DE-601;B:DE-89 |q application/pdf |u http://www.gbv.de/dms/tib-ub-hannover/888797311.pdf |y Inhaltsverzeichnis |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030663253 |
Datensatz im Suchindex
_version_ | 1804179044982325248 |
---|---|
any_adam_object | |
author | Hercher, Christian 1985- |
author_GND | (DE-588)1133091458 |
author_facet | Hercher, Christian 1985- |
author_role | aut |
author_sort | Hercher, Christian 1985- |
author_variant | c h ch |
building | Verbundindex |
bvnumber | BV045275566 |
ctrlnum | (OCoLC)988389621 (DE-599)GBV888797311 |
discipline | Mathematik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03480nam a2200385 c 4500</leader><controlfield tag="001">BV045275566</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191017 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">181107s2017 m||| 00||| ger d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)988389621</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV888797311</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hercher, Christian</subfield><subfield code="d">1985-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1133091458</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Average-Case Analyse parametrisierter und probabilistischer Algorithmen</subfield><subfield code="c">von Dipl.-Math. Christian Hercher</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Jena</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">105 Seiten</subfield><subfield code="c">29,5 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Friedrich-Schiller-Universität Jena</subfield><subfield code="d">2017</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">In both Theoretical Computer Science and practical work it is a disappointing outcome if the considered problem is NP complete. There is almost no hope for an efficient algorithm. However, many approaches have been developed to overcome this barrier: - The study of parameterized complexity allows in many cases the concentration of the explosion of the running time in a given parameter. - The behavior of problems not only in the worst case but also in average cases are studied. Or the data to work with is slightly perturbed. Then the concept of a smoothed analysis gives new insides - Also sometimes the use of randomness in the computing process can help to circumvent some obstacles. - And maybe an approximation is also nearly as good as an optimal solution. All these approaches are well studied on its own, but interactions between them, and the use of multiple approaches together, is a mostly unstudied field of research. In this thesis we study a part of these interactions for some test problems. We show that the reduction rules, given by Gramm et al., for the Clique-Cover problem with high probability not only reduce "yes" instances, but solve them entirely. We also consider the paradigm of bounded search trees, which is widely used for parameterizd problems. We find that the expected running time of a simple bounded search tree algorithm is much lower than the worst case bound for FPT problems Vertex-Cover and d-Hitting-Set. For certain sets of parameter values expected FPT running time for the W[1] and W[2] complete problems Clique and Hitting-Set is achieved, too. Furthermore, we study a simple probabilistic generalization of greedy approximation algorithms. For the Vertex-Cover, Hitting-Set, and the Triangle-Vertex-Deletion problem we find that the probabilistic algorithms we give have a substantially smaller expected approximation ratio than their deterministic equivalents. There is also a trade off: With more time one can expect better solutions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexitätstheorie</subfield><subfield code="0">(DE-588)4120591-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">NP-vollständiges Problem</subfield><subfield code="0">(DE-588)4138229-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">NP-vollständiges Problem</subfield><subfield code="0">(DE-588)4138229-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Komplexitätstheorie</subfield><subfield code="0">(DE-588)4120591-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="t">Average-Case Analyse parametrisierter und probabilistischer Algorithmen</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">V:DE-601;B:DE-89</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://www.gbv.de/dms/tib-ub-hannover/888797311.pdf</subfield><subfield code="y">Inhaltsverzeichnis</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030663253</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV045275566 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:13:37Z |
institution | BVB |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030663253 |
oclc_num | 988389621 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-703 |
owner_facet | DE-355 DE-BY-UBR DE-703 |
physical | 105 Seiten 29,5 cm |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
record_format | marc |
spelling | Hercher, Christian 1985- Verfasser (DE-588)1133091458 aut Average-Case Analyse parametrisierter und probabilistischer Algorithmen von Dipl.-Math. Christian Hercher Jena 2017 105 Seiten 29,5 cm txt rdacontent n rdamedia nc rdacarrier Dissertation Friedrich-Schiller-Universität Jena 2017 In both Theoretical Computer Science and practical work it is a disappointing outcome if the considered problem is NP complete. There is almost no hope for an efficient algorithm. However, many approaches have been developed to overcome this barrier: - The study of parameterized complexity allows in many cases the concentration of the explosion of the running time in a given parameter. - The behavior of problems not only in the worst case but also in average cases are studied. Or the data to work with is slightly perturbed. Then the concept of a smoothed analysis gives new insides - Also sometimes the use of randomness in the computing process can help to circumvent some obstacles. - And maybe an approximation is also nearly as good as an optimal solution. All these approaches are well studied on its own, but interactions between them, and the use of multiple approaches together, is a mostly unstudied field of research. In this thesis we study a part of these interactions for some test problems. We show that the reduction rules, given by Gramm et al., for the Clique-Cover problem with high probability not only reduce "yes" instances, but solve them entirely. We also consider the paradigm of bounded search trees, which is widely used for parameterizd problems. We find that the expected running time of a simple bounded search tree algorithm is much lower than the worst case bound for FPT problems Vertex-Cover and d-Hitting-Set. For certain sets of parameter values expected FPT running time for the W[1] and W[2] complete problems Clique and Hitting-Set is achieved, too. Furthermore, we study a simple probabilistic generalization of greedy approximation algorithms. For the Vertex-Cover, Hitting-Set, and the Triangle-Vertex-Deletion problem we find that the probabilistic algorithms we give have a substantially smaller expected approximation ratio than their deterministic equivalents. There is also a trade off: With more time one can expect better solutions Komplexitätstheorie (DE-588)4120591-1 gnd rswk-swf NP-vollständiges Problem (DE-588)4138229-8 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content NP-vollständiges Problem (DE-588)4138229-8 s Komplexitätstheorie (DE-588)4120591-1 s DE-604 Erscheint auch als Online-Ausgabe Average-Case Analyse parametrisierter und probabilistischer Algorithmen V:DE-601;B:DE-89 application/pdf http://www.gbv.de/dms/tib-ub-hannover/888797311.pdf Inhaltsverzeichnis Inhaltsverzeichnis |
spellingShingle | Hercher, Christian 1985- Average-Case Analyse parametrisierter und probabilistischer Algorithmen Komplexitätstheorie (DE-588)4120591-1 gnd NP-vollständiges Problem (DE-588)4138229-8 gnd |
subject_GND | (DE-588)4120591-1 (DE-588)4138229-8 (DE-588)4113937-9 |
title | Average-Case Analyse parametrisierter und probabilistischer Algorithmen |
title_auth | Average-Case Analyse parametrisierter und probabilistischer Algorithmen |
title_exact_search | Average-Case Analyse parametrisierter und probabilistischer Algorithmen |
title_full | Average-Case Analyse parametrisierter und probabilistischer Algorithmen von Dipl.-Math. Christian Hercher |
title_fullStr | Average-Case Analyse parametrisierter und probabilistischer Algorithmen von Dipl.-Math. Christian Hercher |
title_full_unstemmed | Average-Case Analyse parametrisierter und probabilistischer Algorithmen von Dipl.-Math. Christian Hercher |
title_short | Average-Case Analyse parametrisierter und probabilistischer Algorithmen |
title_sort | average case analyse parametrisierter und probabilistischer algorithmen |
topic | Komplexitätstheorie (DE-588)4120591-1 gnd NP-vollständiges Problem (DE-588)4138229-8 gnd |
topic_facet | Komplexitätstheorie NP-vollständiges Problem Hochschulschrift |
url | http://www.gbv.de/dms/tib-ub-hannover/888797311.pdf |
work_keys_str_mv | AT hercherchristian averagecaseanalyseparametrisierterundprobabilistischeralgorithmen |