Materials Discovery and Design: by Means of Data Science and Optimal Learning
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
[2018]
|
Schriftenreihe: | Springer Series in Materials Science
volume 280 |
Schlagworte: | |
Online-Zugang: | TUM01 UBM01 UBT01 UER01 Volltext |
Beschreibung: | 1 Online-Ressource (XVI, 256 p. 98 illus., 88 illus. in color) |
ISBN: | 9783319994659 |
DOI: | 10.1007/978-3-319-99465-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045275123 | ||
003 | DE-604 | ||
005 | 20181120 | ||
007 | cr|uuu---uuuuu | ||
008 | 181107s2018 |||| o||u| ||||||eng d | ||
020 | |a 9783319994659 |c Online |9 978-3-319-99465-9 | ||
024 | 7 | |a 10.1007/978-3-319-99465-9 |2 doi | |
035 | |a (ZDB-2-PHA)9783319994659 | ||
035 | |a (OCoLC)1187570791 | ||
035 | |a (DE-599)BVBBV045275123 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-29 |a DE-19 |a DE-188 |a DE-703 | ||
082 | 0 | |a 530.1 |2 23 | |
084 | |a UX 1100 |0 (DE-625)146937: |2 rvk | ||
084 | |a UX 1350 |0 (DE-625)146941: |2 rvk | ||
084 | |a PHY 000 |2 stub | ||
245 | 1 | 0 | |a Materials Discovery and Design |b by Means of Data Science and Optimal Learning |c Turab Lookman, Stephan Eidenbenz, Frank Alexander, Cris Barnes (editors) |
264 | 1 | |a Cham |b Springer |c [2018] | |
300 | |a 1 Online-Ressource (XVI, 256 p. 98 illus., 88 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Springer Series in Materials Science |v volume 280 | |
650 | 4 | |a Numerical and Computational Physics, Simulation | |
650 | 4 | |a Characterization and Evaluation of Materials | |
650 | 4 | |a Data Mining and Knowledge Discovery | |
650 | 4 | |a Materials Engineering | |
650 | 4 | |a Computational Science and Engineering | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Surfaces (Physics) | |
650 | 4 | |a Data mining | |
650 | 4 | |a Computer science | |
650 | 4 | |a Numerical analysis | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Planung |0 (DE-588)4046235-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Experimentalphysik |0 (DE-588)4132579-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computerphysik |0 (DE-588)4273564-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Experimentauswertung |0 (DE-588)4153362-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Werkstoffforschung |0 (DE-588)4189670-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Experimentauswertung |0 (DE-588)4153362-8 |D s |
689 | 0 | 1 | |a Computerphysik |0 (DE-588)4273564-6 |D s |
689 | 0 | 2 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | 3 | |a Werkstoffforschung |0 (DE-588)4189670-1 |D s |
689 | 0 | 4 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 5 | |a Planung |0 (DE-588)4046235-3 |D s |
689 | 0 | 6 | |a Experimentalphysik |0 (DE-588)4132579-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Lookman, Turab |0 (DE-588)1136630317 |4 edt | |
700 | 1 | |a Eidenbenz, Stephan |d 1973- |0 (DE-588)1089555156 |4 edt | |
700 | 1 | |a Alexander, Frank |4 edt | |
700 | 1 | |a Barnes, Cris |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-319-99464-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-319-99466-6 |
830 | 0 | |a Springer Series in Materials Science |v volume 280 |w (DE-604)BV040385147 |9 280 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-99465-9 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-PHA | ||
940 | 1 | |q ZDB-2-PHA_2018 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030662809 | ||
966 | e | |u https://doi.org/10.1007/978-3-319-99465-9 |l TUM01 |p ZDB-2-PHA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-99465-9 |l UBM01 |p ZDB-2-PHA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-99465-9 |l UBT01 |p ZDB-2-PHA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-99465-9 |l UER01 |p ZDB-2-PHA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804179043876077568 |
---|---|
any_adam_object | |
author2 | Lookman, Turab Eidenbenz, Stephan 1973- Alexander, Frank Barnes, Cris |
author2_role | edt edt edt edt |
author2_variant | t l tl s e se f a fa c b cb |
author_GND | (DE-588)1136630317 (DE-588)1089555156 |
author_facet | Lookman, Turab Eidenbenz, Stephan 1973- Alexander, Frank Barnes, Cris |
building | Verbundindex |
bvnumber | BV045275123 |
classification_rvk | UX 1100 UX 1350 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA |
ctrlnum | (ZDB-2-PHA)9783319994659 (OCoLC)1187570791 (DE-599)BVBBV045275123 |
dewey-full | 530.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1 |
dewey-search | 530.1 |
dewey-sort | 3530.1 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-319-99465-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03404nmm a2200793zcb4500</leader><controlfield tag="001">BV045275123</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20181120 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181107s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319994659</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-99465-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-99465-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-PHA)9783319994659</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1187570791</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045275123</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UX 1100</subfield><subfield code="0">(DE-625)146937:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UX 1350</subfield><subfield code="0">(DE-625)146941:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Materials Discovery and Design</subfield><subfield code="b">by Means of Data Science and Optimal Learning</subfield><subfield code="c">Turab Lookman, Stephan Eidenbenz, Frank Alexander, Cris Barnes (editors)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 256 p. 98 illus., 88 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer Series in Materials Science</subfield><subfield code="v">volume 280</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics, Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Characterization and Evaluation of Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Mining and Knowledge Discovery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Science and Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfaces (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Planung</subfield><subfield code="0">(DE-588)4046235-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Experimentalphysik</subfield><subfield code="0">(DE-588)4132579-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computerphysik</subfield><subfield code="0">(DE-588)4273564-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Experimentauswertung</subfield><subfield code="0">(DE-588)4153362-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Werkstoffforschung</subfield><subfield code="0">(DE-588)4189670-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Experimentauswertung</subfield><subfield code="0">(DE-588)4153362-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Computerphysik</subfield><subfield code="0">(DE-588)4273564-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Werkstoffforschung</subfield><subfield code="0">(DE-588)4189670-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Planung</subfield><subfield code="0">(DE-588)4046235-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Experimentalphysik</subfield><subfield code="0">(DE-588)4132579-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lookman, Turab</subfield><subfield code="0">(DE-588)1136630317</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eidenbenz, Stephan</subfield><subfield code="d">1973-</subfield><subfield code="0">(DE-588)1089555156</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alexander, Frank</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barnes, Cris</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-319-99464-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-319-99466-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer Series in Materials Science</subfield><subfield code="v">volume 280</subfield><subfield code="w">(DE-604)BV040385147</subfield><subfield code="9">280</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-99465-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_2018</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030662809</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-99465-9</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-99465-9</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-99465-9</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-99465-9</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045275123 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:13:36Z |
institution | BVB |
isbn | 9783319994659 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030662809 |
oclc_num | 1187570791 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-29 DE-19 DE-BY-UBM DE-188 DE-703 |
owner_facet | DE-91 DE-BY-TUM DE-29 DE-19 DE-BY-UBM DE-188 DE-703 |
physical | 1 Online-Ressource (XVI, 256 p. 98 illus., 88 illus. in color) |
psigel | ZDB-2-PHA ZDB-2-PHA_2018 |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Springer |
record_format | marc |
series | Springer Series in Materials Science |
series2 | Springer Series in Materials Science |
spelling | Materials Discovery and Design by Means of Data Science and Optimal Learning Turab Lookman, Stephan Eidenbenz, Frank Alexander, Cris Barnes (editors) Cham Springer [2018] 1 Online-Ressource (XVI, 256 p. 98 illus., 88 illus. in color) txt rdacontent c rdamedia cr rdacarrier Springer Series in Materials Science volume 280 Numerical and Computational Physics, Simulation Characterization and Evaluation of Materials Data Mining and Knowledge Discovery Materials Engineering Computational Science and Engineering Numerical Analysis Surfaces (Physics) Data mining Computer science Numerical analysis Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Planung (DE-588)4046235-3 gnd rswk-swf Experimentalphysik (DE-588)4132579-5 gnd rswk-swf Computerphysik (DE-588)4273564-6 gnd rswk-swf Experimentauswertung (DE-588)4153362-8 gnd rswk-swf Werkstoffforschung (DE-588)4189670-1 gnd rswk-swf Big Data (DE-588)4802620-7 gnd rswk-swf Experimentauswertung (DE-588)4153362-8 s Computerphysik (DE-588)4273564-6 s Big Data (DE-588)4802620-7 s Werkstoffforschung (DE-588)4189670-1 s Maschinelles Lernen (DE-588)4193754-5 s Planung (DE-588)4046235-3 s Experimentalphysik (DE-588)4132579-5 s DE-604 Lookman, Turab (DE-588)1136630317 edt Eidenbenz, Stephan 1973- (DE-588)1089555156 edt Alexander, Frank edt Barnes, Cris edt Erscheint auch als Druck-Ausgabe 978-3-319-99464-2 Erscheint auch als Druck-Ausgabe 978-3-319-99466-6 Springer Series in Materials Science volume 280 (DE-604)BV040385147 280 https://doi.org/10.1007/978-3-319-99465-9 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Materials Discovery and Design by Means of Data Science and Optimal Learning Springer Series in Materials Science Numerical and Computational Physics, Simulation Characterization and Evaluation of Materials Data Mining and Knowledge Discovery Materials Engineering Computational Science and Engineering Numerical Analysis Surfaces (Physics) Data mining Computer science Numerical analysis Maschinelles Lernen (DE-588)4193754-5 gnd Planung (DE-588)4046235-3 gnd Experimentalphysik (DE-588)4132579-5 gnd Computerphysik (DE-588)4273564-6 gnd Experimentauswertung (DE-588)4153362-8 gnd Werkstoffforschung (DE-588)4189670-1 gnd Big Data (DE-588)4802620-7 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4046235-3 (DE-588)4132579-5 (DE-588)4273564-6 (DE-588)4153362-8 (DE-588)4189670-1 (DE-588)4802620-7 |
title | Materials Discovery and Design by Means of Data Science and Optimal Learning |
title_auth | Materials Discovery and Design by Means of Data Science and Optimal Learning |
title_exact_search | Materials Discovery and Design by Means of Data Science and Optimal Learning |
title_full | Materials Discovery and Design by Means of Data Science and Optimal Learning Turab Lookman, Stephan Eidenbenz, Frank Alexander, Cris Barnes (editors) |
title_fullStr | Materials Discovery and Design by Means of Data Science and Optimal Learning Turab Lookman, Stephan Eidenbenz, Frank Alexander, Cris Barnes (editors) |
title_full_unstemmed | Materials Discovery and Design by Means of Data Science and Optimal Learning Turab Lookman, Stephan Eidenbenz, Frank Alexander, Cris Barnes (editors) |
title_short | Materials Discovery and Design |
title_sort | materials discovery and design by means of data science and optimal learning |
title_sub | by Means of Data Science and Optimal Learning |
topic | Numerical and Computational Physics, Simulation Characterization and Evaluation of Materials Data Mining and Knowledge Discovery Materials Engineering Computational Science and Engineering Numerical Analysis Surfaces (Physics) Data mining Computer science Numerical analysis Maschinelles Lernen (DE-588)4193754-5 gnd Planung (DE-588)4046235-3 gnd Experimentalphysik (DE-588)4132579-5 gnd Computerphysik (DE-588)4273564-6 gnd Experimentauswertung (DE-588)4153362-8 gnd Werkstoffforschung (DE-588)4189670-1 gnd Big Data (DE-588)4802620-7 gnd |
topic_facet | Numerical and Computational Physics, Simulation Characterization and Evaluation of Materials Data Mining and Knowledge Discovery Materials Engineering Computational Science and Engineering Numerical Analysis Surfaces (Physics) Data mining Computer science Numerical analysis Maschinelles Lernen Planung Experimentalphysik Computerphysik Experimentauswertung Werkstoffforschung Big Data |
url | https://doi.org/10.1007/978-3-319-99465-9 |
volume_link | (DE-604)BV040385147 |
work_keys_str_mv | AT lookmanturab materialsdiscoveryanddesignbymeansofdatascienceandoptimallearning AT eidenbenzstephan materialsdiscoveryanddesignbymeansofdatascienceandoptimallearning AT alexanderfrank materialsdiscoveryanddesignbymeansofdatascienceandoptimallearning AT barnescris materialsdiscoveryanddesignbymeansofdatascienceandoptimallearning |