Function spaces with dominating mixed smoothness:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Zürich
European Mathematical Society
[2019]
|
Schriftenreihe: | EMS series of lectures in mathmatics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | viii, 202 Seiten |
ISBN: | 9783037191958 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV045246078 | ||
003 | DE-604 | ||
005 | 20190606 | ||
007 | t | ||
008 | 181023s2019 |||| 00||| eng d | ||
020 | |a 9783037191958 |9 978-3-03719-195-8 | ||
035 | |a (OCoLC)1083285294 | ||
035 | |a (DE-599)BVBBV045246078 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-739 |a DE-355 |a DE-83 | ||
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a 46E35 |2 msc | ||
100 | 1 | |a Triebel, Hans |d 1936- |0 (DE-588)133515923 |4 aut | |
245 | 1 | 0 | |a Function spaces with dominating mixed smoothness |c Hans Triebel |
264 | 1 | |a Zürich |b European Mathematical Society |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a viii, 202 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a EMS series of lectures in mathmatics | |
650 | 0 | 7 | |a Funktionenraum |0 (DE-588)4134834-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktionenraum |0 (DE-588)4134834-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030634183&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030634183 |
Datensatz im Suchindex
_version_ | 1804178986005168128 |
---|---|
adam_text | Contents Preface....................................................................................................................... 1 v Spaces on R ................................................................................................... 1 1.1 Definitions and basic assertions........................................................... 1 1.1.1 Basic notation and isotropic spaces ..................................... 1 1.1.2 Spaces with dominating mixed smoothness........................ 4 1.1.3 Atoms..................................................................................... 8 1.1.4 Wavelets ............................................................................... 12 1.1.5 Complements......................................................................... 16 1.2 Properties, I........................................................................................ 21 1.2.1 Introduction............................................................................ 21 1.2.2 Distinguished spaces............................................................. 21 1.2.3 Homogeneity......................................................................... 28 1.2.4 Non-smooth atoms................................................................ 31 1.2.5 Pointwise multipliers and localizations .............................. 35 1.2.6 Pointwise multipliers: General assertions........................... 40 1.2.7 Local embeddings and isomorphic structure......................... 45 1.3 Intermezzo: Key
problems................................................................ 53 1.3.1 Fourier multipliers................................................................ 54 1.3.2 Embeddings ......................................................................... 55 1.3.3 Traces..................................................................................... 57 1.3.4 Dichotomy............................................................................ 62 1.3.5 Atoms, wavelets, pointwise multipliers ............................... 64 1.3.6 Fatou property...................................................................... 64 1.3.7 Extensions............................................................................ 65 1.3.8 Diffeomorphisms................................................................... 66 1.3.9 Résumé.................................................................................. 69 1.4 Properties, II ....................................................................................... 69 1.4.1 Pointwise multipliers: Special assertions ........................... 69 1.4.2 Multiplication algebras.......................................................... 77 1.4.3 Pointwise multipliers, revisited.............................................. 83 1.4.4 Holder inequalities................................................................ 87 1.4.5 Caloric wavelets and smoothing........................................... 94 1.4.6 Thermic characterizations.................................................... 97 1.4.7 Tempered homogeneous spaces with negative
smoothness . 102 1.4.8 Thermic characterizations, revisited.........................................108
viii Contents 1.4.9 Tempered homogeneous spaces with positive smoothness . . 112 1.4.10 Tempered homogeneous spaces with general smoothness . . 119 2 Spaces on domains............................................................................................123 2.1 Introduction........................................................................................ 123 2.2 Localization spaces................................................................................ 125 2.2.1 Definitions and basic properties...............................................125 2.2.2 Wavelet frames.......................................................................... 127 2.3 Refined localization spaces.................................................................... 134 2.3.1 Preliminaries......................................................................... 134 2.3.2 Sobolev spaces...................................................................... 135 2.3.3 Besov spaces............................................................................. 138 2.4 Spaces on smooth domains.............................................................. 141 2.4.1 Motivations and preliminaries.............................................. 141 2.4.2 Spaces with boundary data........................................................150 2.5 Further properties............................................................................... 156 2.5.1 Faber frames......................................................................... 156 2.5.2 Haar
frames............................................................................ 166 2.5.3 Further comments and some embeddings........................... 171 2.5.4 Numerical integration: An example..................................... 173 2.5.5 Discrepancy................................................................................ 179 Bibliography........................................................................................................... 185 Symbols...................................................................................................................197 Index 201
|
any_adam_object | 1 |
author | Triebel, Hans 1936- |
author_GND | (DE-588)133515923 |
author_facet | Triebel, Hans 1936- |
author_role | aut |
author_sort | Triebel, Hans 1936- |
author_variant | h t ht |
building | Verbundindex |
bvnumber | BV045246078 |
classification_rvk | SK 600 |
ctrlnum | (OCoLC)1083285294 (DE-599)BVBBV045246078 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01329nam a2200349 c 4500</leader><controlfield tag="001">BV045246078</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190606 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">181023s2019 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783037191958</subfield><subfield code="9">978-3-03719-195-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1083285294</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045246078</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">46E35</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Triebel, Hans</subfield><subfield code="d">1936-</subfield><subfield code="0">(DE-588)133515923</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Function spaces with dominating mixed smoothness</subfield><subfield code="c">Hans Triebel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Zürich</subfield><subfield code="b">European Mathematical Society</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">viii, 202 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">EMS series of lectures in mathmatics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionenraum</subfield><subfield code="0">(DE-588)4134834-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionenraum</subfield><subfield code="0">(DE-588)4134834-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030634183&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030634183</subfield></datafield></record></collection> |
id | DE-604.BV045246078 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:12:41Z |
institution | BVB |
isbn | 9783037191958 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030634183 |
oclc_num | 1083285294 |
open_access_boolean | |
owner | DE-739 DE-355 DE-BY-UBR DE-83 |
owner_facet | DE-739 DE-355 DE-BY-UBR DE-83 |
physical | viii, 202 Seiten |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | European Mathematical Society |
record_format | marc |
series2 | EMS series of lectures in mathmatics |
spelling | Triebel, Hans 1936- (DE-588)133515923 aut Function spaces with dominating mixed smoothness Hans Triebel Zürich European Mathematical Society [2019] © 2019 viii, 202 Seiten txt rdacontent n rdamedia nc rdacarrier EMS series of lectures in mathmatics Funktionenraum (DE-588)4134834-5 gnd rswk-swf Funktionenraum (DE-588)4134834-5 s DE-604 Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030634183&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Triebel, Hans 1936- Function spaces with dominating mixed smoothness Funktionenraum (DE-588)4134834-5 gnd |
subject_GND | (DE-588)4134834-5 |
title | Function spaces with dominating mixed smoothness |
title_auth | Function spaces with dominating mixed smoothness |
title_exact_search | Function spaces with dominating mixed smoothness |
title_full | Function spaces with dominating mixed smoothness Hans Triebel |
title_fullStr | Function spaces with dominating mixed smoothness Hans Triebel |
title_full_unstemmed | Function spaces with dominating mixed smoothness Hans Triebel |
title_short | Function spaces with dominating mixed smoothness |
title_sort | function spaces with dominating mixed smoothness |
topic | Funktionenraum (DE-588)4134834-5 gnd |
topic_facet | Funktionenraum |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030634183&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT triebelhans functionspaceswithdominatingmixedsmoothness |